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Figure 1: Our approach splits path space into a discrete set of partitions, each of which can be integrated by a separate estimator.
As these are now integrating over sparser spaces, we propose a guided image plane sampling approach based on an analysis
of the acceptance probability for image plane perturbations and accelerated by denoising the information used to create the
partitions. This image shows the bathroom scene showing variance is reduced using our approach (on the right) and Metropolis
Light Transport (in the middle) computed at the same number of samples.

ABSTRACT
Rendering algorithms typically integrate light paths over path space.
However, integrating over this one unified space is not necessarily
the most efficient approach, and we show that partitioning path
space and integrating each of these partitioned spaces with a sepa-
rate estimator can have advantages. We propose an approach for
partitioning path space based on analyzing paths from a standard
Monte Carlo estimator and integrating these partitioned path spaces
using a Markov Chain Monte Carlo (MCMC) estimator. This also
means that integration happens within a sparser subset of path
space, so we propose the use of guided proposal distributions in
image space to improve efficiency. We show that our method im-
proves image quality over other MCMC integration approaches at
the same number of samples.
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1 INTRODUCTION
Modern rendering algorithms rely on well established approaches
for integrating over light paths. These typically find efficient ways
of generating paths which connect light sources to the camera
via a series of interactions with a scene. To render scenes contain-
ing complicated light transport efficiently, various methods have
been proposed, such as Bidirectional Path Tracing [Lafortune and
Willems 1993; Veach and Guibas 1995], ReSTIR approaches [Ket-
tunen et al. 2023; Lin et al. 2022] and Markov Chain Monte Carlo
[Hachisuka et al. 2014; Kelemen et al. 2002; Veach and Guibas 1997].
Many of the concepts in these works overlap, for instance exploiting
the correlation between nearby paths in path or image space.

This work develops an approach for partitioning path space to
further exploit these correlations, whre each of these partitions can
be integrated by a separate estimator. This can bemore efficient than
purely integrating over path space as a whole, and in this work we
focus on integrating using MCMC methods as these form a useful
starting point for developing traditional Monte Carlo estimators.

However, these partitions of path space are sparser than path
space, and this poses a challenge to generate valid paths within
each subspace. This means effective perturbation strategies need to
be aware of the partitioned space, and constrain proposal distribu-
tions to this space. Motivated by the success of other image space



and low dimensional integration approaches, we propose utilizing
information in image space to guide perturbations.

We achieve the partitioning by using a Monte Carlo path tracing
pre-pass to estimate partitions of path space, then also denoising
the contributions of the paths within each partition to build the
image plane guidance distribution. To summarise, our contributions
are as follows:

• A principled approach to partition path space into sub-
spaces, each of which can be integrated by a separate esti-
mator

• An image plane path guidance distribution to generate pro-
posals which explore this partitioned path space, and pro-
pose a method to use sparse image plane information to
build this proposal distribution.

• Results for our approach applied to path space MLT algo-
rithms showing improvements in image quality.

2 RELATEDWORK
Our work focuses on partitioning path space and guiding perturba-
tions so we briefly review related work on MCMC algorithms and
path guiding.

MCMC was first applied to rendering in Metropolis Light Trans-
port by[Veach and Guibas 1997] who formulated the now ubiqui-
tously used path space formalism of light transport. This applied
Metropolis sampling [Hastings 1970; Metropolis et al. 1953] over
a space of all possible paths, and achieved a substantial improve-
ment in scenes containing hard to sample paths over conventional
techniques such as path tracing [Kajiya 1986] or bidirectional path
tracing [Lafortune and Willems 1993; Veach and Guibas 1995]. The
main advantage of this approach was the local exploration of space
around an existing path, allowing for substantially more non-zero
contribution paths to be created at the same computational cost.

Path space MCMC has been further developed in several direc-
tions, for example [Pauly et al. 2000] extended MLT to participating
media [Pauly et al. 2000]. [Jakob and Marschner 2012] proposed a
perturbation based on manifold walks which efficiently connects
path vertices through specular or near-specular interactions. [Otsu
et al. 2018] proposed a perturbation strategy which adapted the
perturbation size based on the local geometry, meaning that pertur-
bations adapted well to high frequency geometry. Half vector space
was used in [Kaplanyan et al. 2014] to constrain perturbations to
a path and had the elegant property of canceling out most geom-
etry terms in the acceptance probability. [Bashford-Rogers et al.
2021] proposed several perturbations based on using an ensemble
of paths to guide sampling of an individual path. [Manzi et al. 2014]
proposed a series of improvements which led to a decrease in vari-
ance in Metropolis sampling for gradient domain rendering, and
used image space exploration to find proposed paths, although in
the context of finding pixel shifts rather than a general perturba-
tion strategy. Other approaches such as Energy Redistribution Path
Tracing [Cline et al. 2005], Multiple-Try MCMC [Nimier-David et al.
2019; Segovia et al. 2007], and Delayed Rejection [Rioux-Lavoie
et al. 2020] all improve MCMC methods by proposing the use of
multiple short chains or multiple attempts at creating a proposal
distribution respectively.

[Kelemen et al. 2002] proposed Primary Sample Space MLT
(PSSMLT), an alternative approach to path space MCMC which
operates on the random numbers used to generate paths. This for-
mulation had the advantage that it is substantially simpler than
path space methods, yet could still explore local regions of path
space. [Hachisuka et al. 2014] operates in a space of multiple paths,
each of a different length, and selects the number of vertices to
perturb from the light and camera. Multiple Importance Sampling
is used to weight the path contributions of the selected combina-
tion of light and eye path. This splitting path space into paths of
the same length is close to our work, and we discuss this more in
Section 4.2.

Several other works have extended PSSMLT. Work such as [Li
et al. 2015] and [Luan et al. 2020] used local path gradient informa-
tion to generate anisotropic proposal distributions which are very
effective at adapting proposals in path space. These are complemen-
tary to our approach which uses global information in image space
to construct a proposal distribution. [Sawhney et al. 2022] recently
proposed the use of PSS perturbations to decorrelate contributions
in ReSTIR algorithms [Lin et al. 2022]. Path space MLT and PSSMLT
were combined into a single space by several works [Bitterli et al.
2018; Otsu et al. 2017; Pantaleoni 2017], and again our approach is
complementary to this work.

Path guiding uses information gathered during rendering or
via a pre-pass to build distributions which match the integrand in
the Rendering Equation [Kajiya 1986] better than purely sampling
the BSDF and cosine term. This encompasses a large amount of
work, from guided sampling of whole paths [Reibold et al. 2018],
use of incident radiance stored on basis functions in world space
[Bashford-Rogers et al. 2012; Diolatzis et al. 2020; Herholz et al.
2016; Hey and Purgathofer 2002; Jensen 1995; Ruppert et al. 2020;
Vorba et al. 2014], 5D Trees [Lafortune and Willems 1995; Müller
et al. 2017] to selective sampling for specific transport phenomena
[Fan et al. 2023; Yu et al. 2023]. Our work generates samples in
image space, and the closest guiding approach is [Cline et al. 2008]
who store information about recent sampling decisions in image
space and use this to guide future sampling. This however is not
directly applicable to our work as this uses a small cache of sampling
decisions in image space, and is based on traditional Monte Carlo
sampling rather than MCMC.

3 BACKGROUND
To begin, we start by introducing the path integral form of light
transport upon which most rendering algorithms are based. This
was described by [Hachisuka et al. 2014; Veach and Guibas 1997]
as:

𝐼 𝑗 =

∫
P
ℎ 𝑗 (𝑥) 𝑓 (𝑥)𝑑𝜇 (𝑥), (1)

where the value of the 𝑗 ’th pixel 𝐼 𝑗 in an image is given by integrat-
ing the contribution of a light path 𝑓 (𝑥) weighted by a filter at the
pixel ℎ 𝑗 (𝑥). A path is defined as a series of path vertices 𝑥0 ..𝑥𝑀 ,
and integration is typically performed with respect to the product
area measure 𝜇. The contribution of a path is then defined as the
product of terms associated with interactions with a scene (note
for notational convenience we index path vertices starting at the
camera):
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Figure 2: Our approach partitions the whole of path space (the left image) into a series of partitions, discussed in Section 4,
each corresponding to a different subset of path space. We propose splitting on the interaction types, as illustrated in the
boxes on the right, with the rightmost box illustrating the contribution from the complementary partition (Equation 6). Each
of these partitions are constructed by performing a Monte Carlo sampling pre-pass to find the contribution of each found
interaction type (top images, and discussed in Section 4.2). These contributions are denoised and are used to guide MCMC
sampling (proposals illustrated in the denoised bottom images), see Section 5.

𝑓 (𝑥) =𝐺 (𝑥0 ↔ 𝑥1)[
𝑀−1∏
𝑘=1

𝑓 𝑟 (𝑥𝑘−1 → 𝑥𝑘 → 𝑥𝑘+1)𝐺 (𝑥𝑘 ↔ 𝑥𝑘+1)
]
𝐿𝑒 (𝑥𝑀 ),

(2)

where 𝑓 𝑟 (𝑥𝑘−1 → 𝑥𝑘 → 𝑥𝑘+1) is the BSDF and 𝐺 (𝑥𝑘 ↔ 𝑥𝑘+1) =
cos(𝜃 ) cos(𝜃 ′ )
| |𝑥𝑘−𝑥𝑘+1 | |2 𝑉 (𝑥𝑘 ↔ 𝑥𝑘+1) is the Geometry Term where 𝜃 and 𝜃 ′

are the angles between the surface normals and the outgoing di-
rection from the surface. 𝑉 (𝑥𝑘 ↔ 𝑥𝑘+1) denotes visibility between
two points.

This is typically integrated over the set of all paths P which is
defined as the union of all path lengths P =

⋃∞
𝑖=2 P(𝑖) where P(𝑖)

are all paths of length 𝑖 which connect the camera to the light source.
This also indicates that paths can be used to integral all pixels in an
image, but only paths for which ℎ 𝑗 (𝑥) > 0 will contribute to the
𝑗 ’th pixel.

Equation 1 can be solved with several numerical methods, but
in this work we focus on MCMC approaches. Metropolis Sampling
[Hastings 1970; Metropolis et al. 1953] starts from an initial state 𝑥 ,
and proposes a new tentative state 𝑥 ′ by sampling from a proposal
distribution 𝑇 (𝑥 → 𝑥 ′) and the state is updated according to an
acceptance probability:

𝑎(𝑥 → 𝑥 ′) =𝑚𝑖𝑛
(
1,
𝑓 ∗ (𝑥 ′)𝑇 (𝑥 ′ → 𝑥)
𝑓 ∗ (𝑥)𝑇 (𝑥 → 𝑥 ′)

)
, (3)

where 𝑓 ∗ (𝑥) is the scalar contribution function which maps RGB
or spectral radiance to a scalar. This has been shown to generate
states which are distributed proportional to 𝑓 ∗ while allowing more
flexibility than a traditional Monte Carlo estimator to explore state
space. [Veach and Guibas 1997] used this to solve Equation 1 via
the following estimator:

𝐼 𝑗 ≈
𝑏

𝑁

𝑁∑︁
𝑘=1

ℎ 𝑗 (𝑥𝑘 ) 𝑓 (𝑥𝑘 )
𝑓 ∗ (𝑥𝑘 )

, (4)

where 𝑏 is a normalizing constant used to appropriately scale the
histogram estimated by MCMC algorithms. 𝑏 can be estimated via
a separate Monte Carlo estimator: 𝑏 =

∫
P 𝑓 ∗ (𝑥)𝑑𝜇 (𝑥).

4 PATH SPACE PARTITIONING
Path space was defined in the previous sections as the union of
paths of different lengths. While this is a general form of writing
this, an alternative, and sometimes advantageous formulation is to
partition path space into a set 𝑆 ′ of 𝐾 discrete subsets:

𝑆 ′ = {P0,P1, ...,P𝐾 }. (5)

To guarantee full coverage of path space, we need to augment
this set with the remaining paths in path space not covered by this
set (we refer to this as the complementary partition):

𝑆 = {𝑆 ′,P \
|𝑆 ′ |⋃
𝑖=1

P𝑖 }. (6)

This means that for the 𝑖’th partition of path space, Equation 1
can be written as:

𝐼𝑖, 𝑗 =

∫
P𝑖
ℎ 𝑗 (𝑥) 𝑓 (𝑥)𝑑𝜇 (𝑥), (7)

where each path 𝑥 ∈ P𝑖 . A MCMC estimator for Equation 9 can be
written similar to Equation 4:

𝐼𝑖, 𝑗 ≈
𝑏𝑖

𝑁

𝑁∑︁
𝑘=1

ℎ 𝑗 (𝑥𝑘 ) 𝑓 (𝑥𝑘 )
𝑓 ∗ (𝑥𝑘 )

, (8)



where𝑏𝑖 is defined as before but with respect to the partitioned path
space 𝑏𝑖 =

∫
P𝑖 𝑓

∗ (𝑥)𝑑𝜇 (𝑥). The final value of the pixel is clearly
then the sum over integrals over each partition:

𝐼 𝑗 =

|𝑆 |∑︁
𝑖=1

𝐼𝑖, 𝑗 . (9)

Equation 10 can also be written as aMonte Carlo estimator where
each partition is selected with probability 𝑃 (𝑖):

𝐼 𝑗 ≈
1
𝑁

𝑁∑︁
𝑘=1

𝑏𝑖ℎ 𝑗 (𝑥𝑘 ) 𝑓 (𝑥𝑘 )
𝑃 (𝑖) 𝑓 ∗ (𝑥𝑘 )

. (10)

While this might initially seem to add unnecessary complica-
tion, there is an advantage to this formulation. MCMC algorithms
transition between states proportional to their contribution. This
means that the sampling algorithm will spend more time in states
with a higher scalar contribution function than those with a lower
contribution. While this is to be expected, in applications such as
rendering this is suboptimal as scenes in which MCMC algorithms
are effective often have widely varying values on the image plane.
An example of this is path spaces which include specular inter-
actions such as caustics which often lead to small regions of the
scene having values which are orders of magnitude larger than
the majority of the scene. As a result, the chain spends orders of
magnitude more time in these regions, which comes at the cost of
more variance in darker regions in an image.

Therefore, if we can partition path space into partitions which
have similar contributions, then rather than chains spending a sig-
nificant amount of time in brighter regions, each chain will explore
its own reduced space. Chains in bright regions, with associated
higher normalizing constant 𝑏𝑖 , will only explore bright regions,
and chains associated with darker regions will be able to expend
more computation in these regions, thereby reducing variance in
these regions.

4.1 1D Example
As an example of this, Figure 3 shows a 1D example of using par-
titioning. 3 a) and 3 b) show a function (red dashed line) being
integrated using standard MCMC sampling without (a)) and with
(b)) partitioning. Both use the same gaussian proposal distribution,
but b) uses two chains, one for the left side of the partition (shown
by the vertical line) and one for the right. Using two chains in this
example allows one chain to explore the high contribution region
on the right, and one to explore the left, low contribution region.
This means that both regions are sampled adequately given the low
sample count used in these figures. The horizontal lines indicate
the value of the normalizing constant in each region. In contrast
not using partitions leads to higher variance in both regions as the
chain has explored the higher contribution region excessively at
this low sample count. Note that both a) and b) converge to the
correct value, but b) has 89 times less variance in this example.

4.2 Practical Considerations
Now we have a formalism to partition path space, this leaves three
questions: how many partitions (𝐾) should be used, how should

a) Without partitions b) With Partitions

Figure 3: Example in 1D of using partitions. a) and b) show
MCMC integration with and without partitioning (the parti-
tion is shown by the vertical line in b)). Using partitioning
decreases variance significantly by allowing two chains to
explore the lower and higher contributions separately, each
of which uses a different normalizing constant (the horizon-
tal line).

path space be partitioned, and with what probability should each
partition be sampled (𝑃 (𝑖))?

There has been some previous work which has considered this
problem, i.e. [Hachisuka et al. 2014], [Bashford-Rogers et al. 2021]
and [Lin et al. 2022]. [Hachisuka et al. 2014] is the most similar
as they explicitly integrate in a set of partitions of different path
lengths, i.e.

𝑆ℎ = {P0,P1, ...,P𝐾 }, (11)

where P𝑖 denotes a path space with 𝑖 + 4 vertices. Each of these
partitions was sampled proportional to its contribution, and path
lengths up to𝐾 +4 could be computed. However, while this solution
is unbiased and quite effective for these paths, this neglects the
rest of path space from Equation 6, and faces the same issue that
paths of the same length may explore regions of path space with
contributions of significantly different orders of magnitude. For
example, using Heckbert path notation [Heckbert 1990], a path of
length 5 may include both low contribution 𝐿𝐷𝐷𝐷𝐸 paths, but very
high contribution 𝐿𝑆𝑆𝐷𝐸 paths.

We propose a solution to the three questions. Like [Hachisuka
et al. 2014], we use a Monte Carlo estimator as a pre-pass and trace
a number of paths. Each subpath can be viewed as estimating a
separate integral, i.e. estimating a value of a partition of path space,
as the path is progressively constructed. Therefore this pre-pass
gives us much of the information needed to partition path space if
we can efficiently extract this information. At this point any infor-
mation about each sub-path could be used, for example interaction
types which classify vertices into specular or diffuse akin to Heckert
notation, regions of the scene or image space explored by the sub
path etc. We take the approach of storing paths corresponding to a
unique set of interactions as specified by their interaction types.

Practically, we store a linked list of buffers 𝐵 corresponding to
each interaction type (i.e. 𝐿𝐷𝐷𝐸, 𝐿𝑆𝐷𝐸, 𝐿𝐷𝐷𝐷𝐸), and accumulate
the contribution of this sub path (𝐶 (𝑥𝑘 ) =

𝑓 (𝑥𝑘 )
𝑝 (𝑥𝑘 ) , where 𝑝 (𝑥) is the
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(a) Isotropic (b) Anisotropic (c) Full 𝑌 ′ (d) Sparse 𝑌 ′

Figure 4: Illustration of different image space proposal distributions for a region in a partition from Figure 2, red regions
indicate higher and blue lower values of the proposal distribution. Isotropic approaches (4a) do not use any information and
can propose paths that are likely to be rejected. Anisotropic proposals (4b) adapt better to the distribution of radiance but are
still limited to a parametric distribution. Figure 4c shows our approach which adapts per-pixel to the estimated lighting based
on the denoised estimate of lighting per partition 𝐷𝑖 , and Figure 4d shows our sparse approximation.

pdf of generating this path), the seed used to generate this sub-path.
We store this as a linked list to minimize the memory requirements
associated with the combinatorial explosion of interaction types in
a complicated scene.

As each buffer defines a partition of path space, we can map
some attributes from each buffer to a scalar and can calculate the
𝐾 most important partitions for use in Equation 5. The mapping
can use any heuristic function, however, we want to both consider
the contribution of the paths in the partition as well as the area
of the image plane over which the paths explore. The reason for
this is that we want to explore large, low contribution regions as
well as small high contribution regions. Therefore, we choose to
consider the total contribution of half the paths |𝐵 |/2 (the other half
is used for initialization of theMCMC algorithm) in the 𝑖’th partition
(𝛾 (𝑖) = ∑ |𝐵 |/2

𝑘=1 𝐶 (𝑥𝑘 ) as this accounts for both the contributions of
the paths and the area of the image covered by these paths.

We can then sort the buffers by 𝛾 and choose the 𝐾 largest which
fit within the memory requirements as discussed in Section 5. The
remaining paths are assigned to the complementary partition (see
Equation 6). The partition is then defined by the path interaction
types in the partition and the probability of choosing a partition is
then 𝑃 (𝑖) = 𝑌 (𝑖 )∑𝐾

𝑘=1 𝛾 (𝑘 )
.

We now need to compute the normalization constant and initial-
ize each MCMC chain in each partition. To estimate both, we split
the initial samples used into two sets of size |𝐵 |/2. One set is used
to estimate the partitions as discussed above, and the contributions
from the other are used to compute the normalizing constant for
the partition (𝑏𝑖 ). Furthermore, an initial path is resampled from
this other set, and we also run burn-in [Brooks et al. 2011] for 1024
iterations to further reduce startup bias.

5 GUIDED IMAGE SAMPLING
Partitioning path space as described in the previous section leads
to a discrete set of regions of path space that will be explored by
a chain. However, this partitioning of path space leads to sparser
regions of path space which contain valid contributions on the

image plane. In image space, this often means that paths from one
partition can only contribute within a small region, but paths from
other partitions may contribute widely over the image plane. If
the original proposal distributions defined in MLT or PSSMLT are
used, these are not likely to be able to explore these spaces well.
Motivated by this, we investigate guiding perturbations on the
image plane such that both small, sparse regions can be explored
effectively, while also having the ability to widely and efficiently
explore the image plane.

We propose to solve this via guiding perturbations on the image
plane. There are two main reasons for choosing the image plane
for guidance rather than the whole of path space. Firstly, in Path
Space MLT [Veach and Guibas 1997], for most scenes the lens
perturbation is typically responsible for the majority of the variance
reduction. Secondly, several other algorithms in rendering exploit
combining sparser estimates of suffix or light paths with a denser
sampling of prefix or camera paths, such as Instance Radiosity
[Keller 1997] and final gathering for photon mapping [Jensen 2001]
or conditional ReSTIR [Kettunen et al. 2023], which again shows
that well converged results can be obtained by focusing sampling
on the image space.

We next discuss guided sampling in path space and formulate
practical guidance distributions for both spaces.

5.1 Path Space Image Plane Guiding
To generate guided samples on the image plane that can still ex-
plore the local region around the current path requires a proposal
distribution which is aware of the contributions of a path to the
image plane in a local region. States will still be visited proportional
to their contribution, but we aim to derive a proposal distribution
that can increase the probability of moving between states based
on their contribution rather than a fixed proposal distribution.

We start by considering the acceptance probability computation
given in Equation 3. Perturbing a path in image space means that
we are perturbing vertices successively until they can be connected



to a fixed remainder of a path which starts at the 𝑠’th vertex from
the camera, which has the contribution:

𝛼 (𝑥) =𝐺 (𝑥𝑠 ↔ 𝑥𝑠+1)[
𝑀−1∏
𝑘=𝑠+1

𝑓 𝑟 (𝑥𝑘−1 → 𝑥𝑘 → 𝑥𝑘+1)𝐺 (𝑥𝑘 ↔ 𝑥𝑘+1)
]
𝐿𝑒 (𝑥𝑀 ).

(12)

Therefore, the prefix path we want to perturb has the following
contribution:

𝑆 (𝑥) =𝐺 (𝑥0 ↔ 𝑥1)
[
𝑠∏
𝑘=1

𝑓 𝑟 (𝑥𝑘−1 → 𝑥𝑘 → 𝑥𝑘+1)𝐺 (𝑥𝑘 ↔ 𝑥𝑘+1)
]

𝑓 𝑟 (𝑥𝑠−1 → 𝑥𝑠 → 𝑥𝑠+1) . (13)

The acceptance probability can now be written as:

𝑎(𝑥 → 𝑥 ′) =𝑚𝑖𝑛
(
1,
𝑆∗ (𝑥 ′)
𝑆∗ (𝑥)�

�
�𝛼∗ (𝑥)

𝛼∗ (𝑥)
𝑇 (𝑥 ′ → 𝑥)
𝑇 (𝑥 → 𝑥 ′)

)
, (14)

Therefore, 𝑇 (𝑥 → 𝑥 ′) ∝ 𝑆∗ (𝑥 ′) then states would be generated
exactly proportional to their contribution up to a normalizing con-
stant. This is challenging to evaluate analytically in a potentially
wide region around the current path in image space. However, if
a set of candidate prefix paths 𝑌 ′ = {𝑥 ′0, 𝑥 ′1, .., 𝑥 ′ |𝑌 ′ | }, each with
contribution𝑄 ′ = {𝑆∗ (𝑥 ′0), 𝑆∗ (𝑥 ′1), .., 𝑆∗ (𝑥 ′ |𝑄 ′ | ) can be generated,
then a candidate path 𝑥 ′ can be sampled from 𝑌 ′ proportional to
𝑄 ′, thereby closely approximating the ideal distribution in a local
region.

As we are perturbing in image space, the logical domain on
which to create the set of paths is over pixels in the local image
space neighborhood of the current path 𝑥 . Therefore, all we need
is to evaluate 𝑆∗ for the subset of pixels. However, even though
𝑆 (𝑥) does not involve many terms, it still requires, at a minimum,
evaluating two BSDFs and two geometry terms (also considering
that each geometry term includes a visibility test). However, we
can leverage the Monte Carlo pre-pass from Section 4.2 to substan-
tially reduce the computation requirements by making a series of
approximations.

Firstly, we assume that the last BSDF evaluation will be similar
for all paths in 𝑌 ′, and set 𝑓 𝑟 (𝑥𝑠−1 → 𝑥𝑠 → 𝑥𝑠+1) = 1. Secondly, as
the BSDFs in a local region often do not vary much we approximate
all other BSDF evaluations as a diffuse BRDF, i.e. 𝜌 𝑗𝜋 , where 𝜌 𝑗 is
the albedo of the first non-specular vertex visible through pixel 𝑗 .
Thirdly, we can precompute𝐺 (𝑥0 ↔ 𝑥1) for all pixels as𝐺 𝑗 . Finally,
we use an approximate value for the visibility term (𝑉 ′

𝑗
in the final

Geometry Term, which allows us to avoid tracing any visibility
rays. We discuss this in Section 5.1.1.

We can then use this information to approximate 𝑆 (𝑥) for the
𝑗 ’th pixel in the set 𝑌 ′:

𝑆 ′ (𝑥 𝑗 ) ≈ 𝐺 𝑗
𝜌 𝑗

𝜋

cos(𝜃 𝑗 ) cos(𝜃 ′)
| |𝑥𝑠−1 − 𝑥𝑠 | |2

𝑉 ′
𝑗 , (15)

where 𝜃 𝑗 is the angle between a stored normal at the pixel 𝑗 and the
outgoing direction. This leads to the final acceptance probability
for the proposed guided image perturbation:

Figure 5: Sparse offsets used to compute 𝑌 ′. Green points are the
arbitrarily chosen initial points and red are the inverse to

guarantee reversibility.

𝑎(𝑥 → 𝑥 ′) =𝑚𝑖𝑛 ©­«1, 𝑆
∗ (𝑥 ′)
𝑆∗ (𝑥)

𝑆 ′∗ (𝑥)
𝑆 ′∗ (𝑥 ′)

∑ |𝑌 ′ |
𝑘=1 𝑆

′∗ (𝑥 ′𝑘 )∑ |𝑌 |
𝑘=1 𝑆

′∗ (𝑥𝑘 )
ª®¬ , (16)

The ratio of sums at the end of this expression comes from
normalization constants that depend on both the set 𝑌 ′ evaluated
at pixels around 𝑥 , and also another set 𝑌 which is evaluated at
pixels around the proposed path 𝑥 ′. This adds extra computation,
so the size of 𝑌 ′ must be chosen carefully to minimize computation
cost.

We now discuss how to build𝑉 ′
𝑗
, and which pixels to use for the

set 𝑌 ′.

5.1.1 Building Image Space Approximations. To build the image
space approximations for 𝐺 𝑗 , 𝜌 𝑗 , and 𝑉 ′

𝑗
we use the fact that we

have stored the set of paths used to generate each partition, and that
we can easily store other attributes such as image space position
𝑋 𝑗 , normal 𝑛 𝑗 , and albedo 𝜌 𝑗 of the first non-specular vertex in a
path in a GBuffer.𝐺 𝑗 and 𝜌 𝑗 are then easy to precompute and store
in an image space buffer, however, the visibility approximation is
harder.

If we assume that the visibility will be similar in a local region
of the image plane, then we can estimate an image space map of
visibility for each of the pixels where paths from the partition can
contribute. To achieve this, we leverage image space denoising (we
use [Áfra 2023]) of the paths from the Monte Carlo prepass which
were used to estimate the partition. Note that any image space
denoiser can be used for this, but instead of denoising all pixels in
an image, the denoiser needs to focus on the smaller subset of pixels
that have a non-zero contribution. This results in a denoised image
for each partition 𝐷𝑖 . We then directly leverage this to compute the
visibility approximation:

𝑉 ′
𝑗 =

{
1 if 𝐷𝑖, 𝑗 > 𝜖
𝜖 otherwise

(17)
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5.1.2 Choosing 𝑌 ′. We also have substantial freedom to choose
the pixels which will form the elements of 𝑌 ′ given one condition:
the choice of elements of 𝑌 ′ must preserve detailed balance, specif-
ically the reversibility condition. Another way of saying this is that
𝑇 (𝑥 ′ → 𝑥) must be greater than zero for any proposed state 𝑥 ′. An
obvious approach could be to use all pixels within a fixed radius
𝑅 around and including the current state 𝑥 , referred to as Full 𝑌 ′.
This guarantees that there is a non-zero density for reaching any
pixel from any other pixel within 𝑅. We illustrate this in Figure
4 which shows the difference between using isotropic proposal
distributions, anisotropic proposals, and our approach.

This approach leads to a proposal distribution which adapts to
the estimate of the illumination within a local region. However,
computing the set of contributions𝑄 ′ is computationally expensive
if all pixels within the region 𝑅 are considered. This cost can be
substantially reduced by only considering a sparse approximation
to Full 𝑌 ′ which obeys the above condition.

We describe the set of shifts in image space, measured in pixels,
required to construct 𝑌 ′ as a set of 2D offsets from the image plane
coordinates of the current path:

Δ = {(𝛿.𝑥, 𝛿 .𝑦)0, (𝛿.𝑥, 𝛿 .𝑦)1, .., (𝛿.𝑥, 𝛿 .𝑦) |𝑌 ′ | }. (18)

The first |𝑌 ′ |−1
2 offsets in this set can be chosen arbitrarily,

for example from a uniform sampling of a disk of radius 𝑅. The
middle element needs to be (0, 0), and the remaining elements
of Δ must be set as the inverse of the first |𝑌 ′ |−1

2 elements, e.g.
(𝛿.𝑥, 𝛿 .𝑦) |𝑌 ′ |−1

2 +𝑘+1 = (−𝛿.𝑥,−𝛿.𝑦)𝑘 ,∀𝑘 ≤ |𝑌 ′ |−1
2 . This inversion

guarantees that the initial state can be reached from any proposed
state. We find it advantageous to propose more states closer to
the current path, so we create the initial |𝑌 ′ |−1

2 offsets using a low
discrepancy sequence which generates points (𝜁 .𝑥, 𝜁 .𝑦) which we
mapped to the disk using a non-uniformity preserving mapping to
polar coordinates (𝑟,Θ) = (𝜁 .𝑥2, 2𝜋𝜁 .𝑦) which are mapped to pixel
shifts in Δ. This is illustrated in Figure 5 which shows the initial
|𝑌 ′ |−1

2 points in green, the center in blue, and the inverse set as red.

6 RESULTS
We show results for our approach when applied to path space
MLT [Veach and Guibas 1997]. We chose this algorithm for our
baseline comparisons as it is themain path spaceMCMC integration
algorithm, and as noted in Section 2, our method is complementary
to most approaches which extend these works. We used a CPU
prototype implementation of all algorithms, and generated results
on a laptop with a i9-11980 CPU and 32GB RAM. All methods
use the same number of samples for initialization (computation of
the normalization constants and resampling an initial path), but
ours has an extra computational overhead of creating the denoised
images, although this took a maximum of two seconds for all our
results. We used the Intel Open Image Denoiser [Áfra 2023] to
denoise our images; and although this is not trained on denoising
partitioned path space contributions on the image space, we found
that it performed well. Our method has a linear memory cost in
terms of the number of partitions, consisting of a tiny amount of
extra memory to store per-partition chain information, and a larger
resolution dependent buffer for use when evaluating𝑉 ′

𝑗
in Equation

15 This added around 80MB memory usage for all scenes in our
results. We use 10 partitions plus the complementary partition
in all our results as we found this allows the important majority
of lighting to be found for all scenes, and use |𝑌 ′ | = 128, as we
found this balanced variance reduction with computational cost
(our unoptimized implementation has a 19% overhead compared to
MLT)

All scenes were rendered on average at 32 mutations per pixel.
Figure 1 shows the bathroom scene, where our method has an
RMSE of 0.4462 and MLT 0.5788, an 29% improvement. Figure 7
compares our approach (RMSE 0.00816) with MLT (RMSE 0.01156),
Ensemble Metropolis Light Transport (EMLT 0.00742) [Bashford-
Rogers et al. 2021] and Geometry Aware MLT (GAMLT 0.00927)
[Otsu et al. 2018] with the extensions proposed in [Bashford-Rogers
et al. 2021]. While EMLT slightly outperforms our method, we
remain competitive both in terms of objective metrics and visually
as can be seen in the figure.

Figure 8 shows the door-ajar and kitchen scenes which have
an RMSE of 0.0811 (Ours) vs 0.0924 (MLT) and 0.0222 (Ours) vs
0.0225 (MLT) for the scenes respectively. Our approach leads to
better convergence by distributing samples between partitions, as
is highlighted by the unbalanced sampling of glass teapot in MLT
in the door-ajar scene at this low sample number compared to our
method which leads to more equal coverage of the partitions.

Finally, we show the impact of different sizes of |𝑌 ′ | and different
with different radii in Figure 6, which shows that too few points in
|𝑌 ′ | leads to structured noise, and a too large radius leads to more
high frequency noise.

Overall the results show that our method leads to an overall
reduction in variance, however there can be increased noise com-
pared to MLT in local regions of the scene. This is due to the sparse
nature of 𝑌 ′, and future work will investigate a more optimal set
of values for 𝑌 ′ to reduce this variance.

7 CONCLUSION
This paper proposed a principled approach to partition path space
into a discrete set of subspaces. We propose an automated algorithm
to choose these partitions, and an image space MCMC proposal
distribution which can explore these spaces efficiently. This distri-
bution is based on an analysis of terms in the acceptance probability
and can be efficiently approximated via the use of denoising the
initial samples used to create the partitions. Our results show an
improvement in variance for the same number of samples across
several scenes.
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The rows show different radii, and the columns show the
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Reference Ref MLT GAMLT EMLT Ours

Figure 7: Results for the staircase scene comparingMLT, Geometry AwareMLT (GAMLT) with extensions proposed in [Bashford-
Rogers et al. 2021], Ensemble Metropolis Light Transport (EMLT) and Ours.

Reference MLT Ours

Figure 8: Results for the door-ajar and kitchen scenes showing the reference (left) MLT (middle), and our method (right). Our
approach reduces variance by distributing samples between partitions and the use of guided image perturbations.
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