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Towards Quantum Ray Tracing - Supplementary
Material

Luı́s Paulo Santos, Thomas Bashford-Rogers, João Barbosa and Paul Navrátil

This document contains supplementary material associated
with the document ”Towards Quantum Ray Tracing”. We first
describe quantum searching in more detail and provide the
steps and intuition behind this algorithm. We then provide a
detailed description of the 3D scenes used in the experiments
reported in the paper. We conclude with more details about
our implementation of practical quantum ray tracing.

I. QUANTUM SEARCHING

Consider a function acting on a binary string f : {0, 1}n →
{0, 1}, or equivalently in decimal notation f : X → {0, 1},
where X denotes the set of all non-negative integers less than
N = 2n, {0, 1, . . . N − 1}. Define f(x) as

f(x) =

{
1 if x is a solution
0 otherwise.

(1)

Searching can be described as the problem of finding a value
x ∈ X such that f(x) = 1.

This section introduces quantum searching over an unstruc-
tured database. The cases when the number of solutions to the
problem is known and unknown are presented, followed by
the problem of searching for a minimum.

A. Grover’s algorithm

If nothing is known about the structure of f() and if there
are t solutions (i.e., t different x values ∈ X such that f(x) =
1), then a classical approach will find a solution after N/(t+1)
evaluations of f() on average and N − t+1 such evaluations
in the worst case.

Let Â, referred to as the oracle, be the quantum operator
implementing f(), such that

Â|0⟩⊗n|0⟩ = 1√
N

N−1∑
i=0

|i⟩|f(i)⟩ (2)

Â sets the output qubit to |1⟩ when the value |i⟩ represented
by the n state qubits is a solution for f(). A single evaluation
of the oracle computes the value of f() for all points in
X , this is quantum parallelism; however, these cannot be
measured. Grover’s quantum searching algorithm enables find-
ing, with high probability, a solution for the search problem
with O(

√
N/t) evaluations of Â and its inverse, therefore

providing a quadratic advantage over the classical result [1].
Let the vector |Ψ⟩ = Â|0⟩⊗n|0⟩ be expressed as a linear

combination of the orthogonal vectors |Ψ0⟩ and |Ψ1⟩, see
figure 1. |Ψ0⟩ contains all the basis states |i⟩ that do not satisfy
f(), and |Ψ1⟩ contains the remaining basis states, i.e, those

satisfying f(i) = 1. Clearly, |Ψ⟩ =
√

N−t
N |Ψ0⟩ +

√
t
N |Ψ1⟩,

up to some normalizing constant. More formally this partitions
the Hilbert space of the quantum system into two subspaces
which are labelled as ”good” and ”bad” subspaces [2].

Fig. 1. |Ψ⟩ represented as a linear combination of the subspaces defined by
the non-solution and the solution basis states, i.e. |Ψ0⟩ and |Ψ1⟩, respectively.

The angle subtended by |Ψ⟩ and |Ψ0⟩ is denoted by θa, with
sin(θa) =

√
t/N meaning that |Ψ⟩ can also be represented

as |Ψ⟩ = cos(θa)|Ψ0⟩+sin(θa)|Ψ1⟩. The probability of mea-
suring a good state, i.e. a state in |Ψ1⟩, is a = sin2 θa = t

N .
Grover’s algorithm seeks to maximize this probability, thereby
finding a solution to f().

The oracle Â implements f() by marking states which
are solutions to f(x) = 1. Grover’s algorithm requires two
additional operators.
Ŝχ flips the sign of the amplitudes of marked solutions, i.e,

those with the output qubit equal to |1⟩ – see the bottom left
image of figure 2.
ŜO, on the other hand, flips the sign of only the zero state

coefficient. The diffusion operator D̂ = −ÂŜOÂ−1 performs
a reflection over the mean of all basis states’ amplitudes. In
practice, this amplifies the amplitude of the marked states,
whose amplitude was negative after applying Ŝχ – see the top
center image in figure 2, where the orange line indicates the
average amplitude of all states and each state amplitude has
been mirrored over this average. Equivalently, this corresponds
to rotating state |Ψ⟩ = Â|0⟩⊗n|0⟩ by 2θa, thereby increasing
the probability of measuring a ”good” state from sin2(θa) to
sin2(3θa) – see the top row of figure 2.

A Grover evaluation is defined as marking and amplifying
the amplitude of ”good” states, resulting in Grover’s operator
Q̂ = D̂Ŝχ. Figure 2 shows this pictorially, where ”bad” states
are shown in red, and ”good” states in green. Each successive
evaluation of Q̂ further rotates the state vector by 2θa. After r
applications of Q̂ the angle between |Ψ⟩ and |Ψ0⟩ is given
by θ

(r)
a = (2r + 1)θa and |Ψ⟩ = cos((2r + 1)θa)|Ψ0⟩ +

sin((2r + 1)θa)|Ψ1⟩. The probability of measuring a ”good”
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Fig. 2. Grovers algorithm for t = 1. Successive applications of Q̂ progressively maximize the probability of reading a ”good” state, marked in green. The
operator Ŝχ flips the sign of ”good” states, and the operator D̂ marks ”good” states and flips those states around the average, shown as an orange line.

state is given by

pΨ1
(N, t, r) = sin2((2r + 1)θa) (3)

It can be shown, for sufficiently large N and t ≪ N , that
pΨ1(N, t, r) is maximized for

r = ropt =

⌊
π

4

√
N

t

⌋
This result gives quantum searching the complexity of
O(

√
N
t ), a quadratic advantage over the classical complexity

of O( N
t+1 ). Since the sin is a periodic function, performing

more than ropt Grover evaluations will decrease pΨ1
.

If t is not significantly smaller than N , the expression for
ropt no longer applies. However, in such cases measuring the
uniform superposition |Ψ⟩ = Â|0⟩⊗n|0⟩ will succeed with
probability t/N , which might be computationally effective
given that t/N will be significantly larger than 0. By re-
peatedly sampling the superposition k times, a good state
will be found with probability equal to t

N

∑k
i=1

(
N−t
N

)i−1
.

If t > N/2, i.e. over half the states are solutions, Grover’s
algorithm no longer amplifies the amplitude of good states,
but a solution can be found by sampling |Ψ⟩ at most twice.

A good solution is found with probability pΨ1
(N, t, ropt),

with a false positive being returned otherwise. Classically
verifying whether the returned value x is a solution is O(1).
Grover’s algorithm can be reevaluated if a false positive is
measured.

However, the successful application of Grover’s algorithm
requires that the number of solutions t is known beforehand.

B. Adaptive Exponential Search

When there is an unknown number of solutions t, the
parameters derived from it, such as a, θa and ropt, are
also unknown. This is especially the case in many graphics
problems; for example, a ray may intersect with an unknown
number of primitives. Boyer et al. [3] proposed a hybrid
quantum-classical algorithm to this type of problem, which
still allows for a quadratic query complexity gain w.r.t. a
classical approach.

This algorithm is referred to as Adaptive Exponential Search
(or QSearch() – see algorithm 3) and is based on the

classical exponential search algorithm [4]. It is an iterative
algorithm, which executes Grover’s algorithm multiple times
with different numbers r of evaluations of Q̂ – line 12 in
algorithm 3. For each iteration l the respective rl is randomly
selected within an interval ranging from 1 to Ml – line 11.
It is this upper limit, denoted by Ml =

⌈
cl
⌉
, that grows

exponentially at each iteration l of QSearch() up to a
maximum of

√
N – line 10. c is a constant such that c ∈)1, 2).

After each execution of Grover’s algorithm, with the respective
rl, the resulting state is measured – line 13. The returned value
i is then classically evaluated, to check whether f(i) = 1 (line
14). If the test succeeds the algorithm terminates. This classical
evaluation of f() for a single point of its domain is O(1),
therefore it does not add up to the algorithm’s complexity.

Prior to the iterative process the uniform superposition
is randomly sampled – line 2. The measured value is then
classically checked; this is the evaluation of f(i) in line 3.
Randomly sampling will, with high probability, successfully
handle the cases where the number of solutions t is large
compared to N , particularly the case where t ≥ N/2. The
iterative exponential searching process is entered only when
random sampling fails.

The algorithm converges in O(
√

N
t ) steps, therefore ex-

hibiting the same complexity as Grover’s algorithm.
QSearch() never returns a false positive, since solutions

are always classically checked at either lines 3 or 14. If
found=False then it is either a true or a false negative. A true
negative corresponds to the no solutions case, i.e., t = 0.
A false negative is understood as returning a value i in the
search domain with f(i) = 0, when in fact t > 0, i.e., there
are solutions j ̸= i, such that f(j) = 1. Determining whether i
is a false or a true negative cannot be done without classically
visiting all points of the search domain (in the worst case). The
probability of false negatives, pQS , can be arbitrarily reduced
by repeating QSearch()multiple times. A novel estimate for
pQS is developed in the main paper.

C. Minimum finding algorithm

The minimum finding algorithm [5], [6] is an iterative
approach that searches for a value i ∈ X which is a solution
for f() (equation 1) and also minimizes a function g : X → Z.
A new function fmin() is defined such that QSearch() can
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1: procedure QSEARCH(Â, f(·))
2: i← measure (Ĥ |0⟩) ▷ sample the superposition
3: if f(i) == 1 then
4: found ← True
5: else
6: M0 ← 0; l← 0; found← False
7: c constant, such that c ∈ (1, 2)

8: while not found and Ml <
⌈√

N
⌉

do
9: l← l + 1

10: Ml ← min(
⌈
cl
⌉
,
⌈√

N
⌉
)

11: rl ← randInt(1 . . .Ml)
12: |Ψ⟩ ← Q̂rlÂ |0⟩
13: i← measure (|Ψ⟩)
14: if f(i) == 1 then
15: found ← True
16: end if
17: end while
18: end if
19: return (i, found)
20: end procedure

Fig. 3. Adaptive Exponential Search algorithm.

still be used. fmin() unites the two conditions imposed by f()
and g():

fmin(x, currMin) =

{
1 if f(x) == 1 and g(x) < currMin

0 otherwise.
(4)

Note that fmin() is similar to fint(), the intersection operator
defined in the paper’s introduction. fmin() returns 1 for all
solutions where g(x) < currMin holds, and not only for
g()’s minimum, which is unknown. A new quantum oracle,
Âmin, is defined which marks solutions according to fmin():

Âmin|0⟩⊗n|0⟩ = 1√
N

N−1∑
i=0

|i⟩|fmin(i)⟩ (5)

The minimum finding approach (algorithm 4) iteratively
calls QSearch() in an attempt to find a value less than the
current minimum. The actual minimum is unknown, there-
fore the number of iterations is limited to some constant
#IT . Since initially no estimate is known for the mini-
mum, QSearch() is used with operator Â – line 6. Once
a solution is found, it is used as the current minimum and
operator Âmin is used from that point on – line 10. Whenever
QSearch() succeeds in finding a new minimum, which is
less that the current threshold, this threshold is updated – line
12.

This algorithm has been demonstrated to find the minimum,
with high probability, with complexity O(

√
N), therefore

maintaining the quadratic advantage with respect to a classical
approach [5], [6].

II. EXPERIMENTAL SETUP - SCENES DESCRIPTION

We use the following scenes to compare the approaches:

1: procedure MINIMUM(Â, f(), g(),#IT )
2: currMin← −1 ▷ no minimum threshold yet
3: solution← −1; it← 1
4: while it ≤ #IT do
5: if currMin == −1 then
6: i, found ← QSearch (Â, f())
7: end if ▷ improve on current minimum threshold
8: prepare fmin() from f(), g() and currMin
9: prepare Âmin from fmin()

10: i, found ← QSearch (Âmin, fmin())
11: if found then
12: currMin← g(i); solution← i
13: end if
14: it← it+ 1
15: end while
16: return solution
17: end procedure

Fig. 4. Minimum finding algorithm.

(a) Qornell Box. (b) Depth Complexity scene.

Fig. 5. Scenes used for obtaining experimental results

• Quantum Cornell Box – denoted by the Qornell Box
(figure 5a). The scene is lit by two point light sources and
includes a specular mirror in the left wall. The respective
image space depth complexity map is presented in figure
6a. Several versions are used, with the number of geomet-
ric primitives, N , ranging from 8 to 512. However, for all
these versions at most 6 such primitives are intersected
by any ray, allowing for a depth complexity t independent
on the total number of primitives;

• Depth Complexity – this synthetic scene, with all prim-
itives parallel to the image plane, exhibits varying depth
complexity (figure 6b). The upper left and lower right
quadrants have a depth complexity of 2 and 9, respec-
tively, with smooth variations around the borders due to
perspective projection. The remaining two quadrants have
similar depths, but a checkerboard pattern of polygons is
included to increase the image plane’s spatial frequency.
The impact of different depth complexities across the
image plane in the number of QTrace() iterations (and
consequently, oracle evaluations) is assessed.in the paper
For scalability analysis there are 2 versions of the scene,
with 32 and 64 primitives, both exhibiting exactly the
same depth complexity and rendering to the same image
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(figure 5b).

(a) Qornell Box scene. (b) Depth Complexity scene.

Fig. 6. Image space depth complexity maps (i.e., number of primitives
intersected by each pixel’s primary ray) at 128x128 resolution

III. PRACTICAL QUANTUM RAY TRACING

The current stage of development of quantum hardware
is often referred to as Noisy Intermediate Scale (NISQ),
imposing severe constraints on the depth and number of gates
of near-term quantum circuits [7]. The ray tracing algorithm
proposed in the associated paper is still to deep to allow
robust execution on current quantum hardware. Validating it on
classical simulators of quantum circuits in useful time requires
constraining the ray tracing problem in order to make the
algorithm practical.

This section describes the restrictions and design options
imposed onto the oracle in order to develop a practical
quantum ray tracing algorithm. These include constraining
the complexity of the scenes and the precision of the 3D
coordinates, as well as performing some parts of the ray
intersection computation on the classical computer, rather than
on the quantum device. There are no fundamental reasons why
these restrictions will hold in the future, as error-corrected
quantum computers become a reality and the depth / coherence
time of quantum circuits progressively increase.

This section starts by describing the geometric setup and
processes required for a practical prototype implementation
and then develops the associated ray tracing oracle.

A. Geometric Setup

Existing quantum systems impose severe limits on both the
depth and width of executable circuits, i.e., on the number
of gates along the circuit’s longest path and on the number
of qubits, respectively. Additionally, no functional units are
included to support arithmetic operations over any numerical
data type, such as integer or floating point number representa-
tions. Support for these operations must be explicitly included
in the user’s program, increasing the circuit’s depth and width.
To maintain circuit’s complexity within the limits supported by
current simulators, this work imposes the following conditions
on the geometric setup:

1) all numerical values (e.g. coordinates) are represented
using fixed point representation;

2) axis aligned rectangles (AAR) are the only supported
geometric primitives.

1: procedure fint(r, p,min)
2: intersect ← True
3: for i ∈ [′X ′,′ Y ′,′ Z ′] do
4: rpci ← rpc eval(r, p, i)
5: if rpci < p.mini or rpci > p.maxi then
6: intersect ← False
7: end if
8: end for
9: if rpc eval(r, p,′ D′) ≥ min then

10: intersect ← False
11: end if
12: return intersect
13: end procedure

Fig. 7. Practical fint(r, p,min)

Rays are parameterized by origin, direction and maximum
depth using fixed point representation, as mentioned above.

The oracle prepares the uniform superposition over all
p ∈ S and implements the ray tracing intersection function
fint(r, p,min):

fint(r, p,min) =

{
1 if f(r, p) = 1 and g(r, p) < min

0 otherwise.
(6)

The proposed implementation of the latter is depicted as
pseudo-code in algorithm 7.

Each axis aligned rectangle, i.e. each geometric primitive
p, is represented by six fixed-point numbers corresponding to
the minimum and maximum coordinates along each axis; the
minimum and maximum coordinates have equal values for the
axis aligned plane embedding the rectangle. The intersection
algorithm computes the intersection point between the ray
and the plane embedding the primitive p. This intersection
point is denoted by rpc, standing for ray plane intersection
coordinates. The method rpc_eval(r, p, axis) (line 4 of
algorithm 7) returns, as a fixed point value, rpc for the
given axis (’X’, ’Y’ or ’Z’) or, alternatively, the depth of that
intersection point, i.e. the length of the ray from its origin
up to the ray plane intersection (’D’). Then, given rpc and
the axis aligned rectangle coordinates, a valid intersection is
reported if the former projects into the latter and the depth
is less than the currently known minimum depth. Note that
rpc_eval() calls the minimum finding algorithm, which
calls QSearch() , which will then execute Grover’s quantum
search circuit; this is an hybrid quantum-classical algorithm.

B. The practical ray tracing oracle

Figure 8 presents the actual implementation of the oracle
Â.

The superposition on index is prepared using n Hadamard
gates. The operator R̂T r implements, for all primitives p
indexed by index, the intersection function fint(r, p,min),
according the logical sequence sketched in algorithm 7. The
axes X , Y , Z and clipping depth are processed in sequence,
as illustrated by the sub circuits ĉX , ĉY , ĉZ and ĉD. Each of
these ĉ[X,Y,Z,D] operators will set the associated ancilla qubit
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Fig. 8. Operator Â.

int[X,Y,Z,D] to |1⟩ if the respective intersection conditions (as
described in algorithm 7) are met. The output qubit int is set to
|1⟩ if and only if all four ancilla qubits are equal to |1⟩. Due to
quantum parallelism these computations occur simultaneously
for all primitives p indexed by the superposition in index.
Finally, all computations on int[X,Y,Z,D] are reversed, such
that operator R̂T r only changes the quantum state of the
output qubit int.

Fig. 9. Operator ĉX .

Figure 9 depicts the quantum circuit ĉX processing axis X
and generalizes to ĉY , ĉZ and ĉD:

rpcX -computes the X coordinate of the intersection point
between the ray and the plane containing the geo-
metric primitive, writing it into the drpc register;

mX - (respectively MX ) loads the minimum (respectively
maximum) X coordinate of each primitive indexed
by index, writing it into the dcoord register. These
operators can be understood as the loading of the
scene description, on a per axis basis, into the
quantum circuit. Their role is the same as the L̂oad
operator described in the paper, but instead of load-
ing in parallel the six parameters describing each
primitive, these parameters are loaded in sequence,
allowing for a six-fold reduction on the number of
qubits;

≤ - (respectively ≥) negates qubit intX for those prim-
itives in the superposition where mX ≤ rpcX
(respectively MX ≥ rpcX ). Since iX is initially set
to |1⟩ (gate X), its final value will be |1⟩ if and only
if mX ≤ rpcX ≤MX ;

m−1
X - (and M−1

X , rpc−1
X ) all intermediate computations

are reversed, such that only the quantum state of
superposition index ⊗ intX is changed by operator
ĉX .

Evaluating the ray plane intersection point – Evaluating
rpc[X,Y,Z,D] (the coordinates and depth of the intersection
point between the ray and the plane embedding the primi-
tive) requires performing a significant number of fixed point
operations, which is well above current quantum systems’

capabilities. There is no theoretical reason why these com-
putations can not be performed by the quantum computer; in
fact they can and there are quantum fixed and floating point
libraries available [8], [9], [10], [11]. However, including these
computations in the quantum circuit would increase its depth,
width and number of gates far beyond what can be expected to
be executable in a robust manner in the short/medium term.
Even simulating such quantum circuits would be infeasible
due to exponential growth of time and memory requirements.
To resolve this, the hybrid quantum classical renderer used
for the experiments in this work classically computes these
coordinates. The rpc[X,Y,Z,D] components appropriately set
the qubits in drpc, but the coordinates are looked up on a
classically evaluated table, rather than evaluated by the quan-
tum circuit. Classically evaluating these coordinates is O(N),
where N is the number of primitives. Quantum evaluation of
these coordinates would be O(1) due to quantum parallelism.
Whereas this option seems to compromise this paper’s goal
of presenting a O(

√
N) complexity ray tracing algorithm, we

argue that:
• the intersection evaluation is still performed using the

quantum circuit;
• there is no fundamental reason why in the near future

these computations can not be performed by the quantum
system. As the technology of quantum computers evolves
so will the supported circuit depth and width, allowing the
migration of these operations to the quantum machine;

• this allows us to practically evaluate and optimize the
performance of the core parts of the quantum ray tracing
algorithm before sufficiently powerful quantum comput-
ers are available.
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