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Abstract

Stereoscopic and high dynamic range (HDR) imaging are two methods that enhance video content by respectively improving depth
perception and light representation. A large body of research has looked into each of these technologies independently, but very
little work has attempted to combine them due to limitations in capture and display; HDR video capture (for a wide range of
exposure values over 20 f-stops) is not yet commercially available and few prototype HDR video cameras exist. In this work we
propose techniques which facilitate stereoscopic high dynamic range (SHDR) video capture by using an HDR and LDR camera
pair. Three methods are proposed: one based on generating the missing HDR frame by warping the existing one using a disparity
map; increasing the range of LDR video using a novel expansion operator; and a hybrid of the two where expansion is used for
pixels within the LDR range and warping for the rest. Generated videos were compared to the ground truth SHDR video captured
using two HDR video cameras. Results show little overall error and demonstrate that the hybrid method produces the least error of
the presented methods.
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1. Introduction

One of the major goals of digital imaging is representing an
imaged scene to a human observer in the most realistic manner
possible. Ultimately, the presented scene should be indistin-
guishable from reality. Current imaging techniques are able to
convey the appearance of a real scene to an extent, but they
are still limited in a number of aspects including accurate light-
ing and depth reproduction. More recent techniques such as
stereoscopic imaging and high dynamic range imaging over-
come some of these limitations.

The traditional representation of depth, present in paintings,
photographs, and television relies only on monoscopic cues and
thus does not render a realistic representation of a scene. Stere-
oscopy improves the situation by providing a significantly im-
proved perception of depth. Both stereoscopic video cameras
[1] and stereoscopic displays [2] have recently become avail-
able to consumers. Stereoscopy has been shown to provide
benefit in a number of tasks including position and distance
judgement, identifying objects, spatial manipulation of objects,
navigation, and spatial understanding [3]. Application areas of
stereoscopy include medicine [4], military [5], entertainment,
industrial computer aided design [6] and photogrammetry [7].

HDR imaging is a relatively novel imaging technique which
enables capture of all the lighting visible to the human eye
and more [8, 9]. Traditional imaging methods are unable to
capture such a luminance range and are hence termed low dy-
namic range (LDR). They contain underexposed and overex-
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posed regions which lack any detail, and data in those regions
is lost. This is caused by the limitations of the capturing and
display devices. Native HDR video capture is limited to the re-
search community where expensive camera prototypes are be-
ing developed [10, 11]. Even traditional viewing benefits from
HDR content; methods called tone mappers scale down dy-
namic range of the HDR content to fit that of LDR displays
attempting to preserve as much visual information as possible
[12, 8]. HDR imaging has a number of application areas includ-
ing physically-based rendering, remote sensing, digital photog-
raphy, image and video editing, entertainment industry, virtual
reality, computer vision and security [9].

Stereoscopic high dynamic range (SHDR) imaging brings
these two technologies together thereby enabling content with
an unprecedented level of realism. It can deliver advantages
common to both technologies: improved depth perception and
realistic lighting representation of a scene. Currently there is
no camera which would natively capture SHDR content, file
formats and compression methods for SHDR are lacking and
displays which would show SHDR are unavailable.

This paper is concerned with the capture of SHDR videos.
The straightforward approach would use two HDR cameras
mounted side-by-side. Currently, however, HDR cameras are
expensive and bulky so combining two of them is unfeasible.
Two views in a stereo pair are similar and there is significant
data overlap between them which can be exploited to avoid
using two HDR sensors. In this work we propose generating
SHDR video from an HDR-LDR video pair. Figure 1 outlines
the concept. Selmanovic et al. [13] demonstrated that it is
possible to generate SHDR content from an HDR-LDR pair.
In a user study they demonstrated that participants could not
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Figure 1: SHDR video is generated from an HDR-LDR video pair. The original
HDR video is unmodified and represents one view while the second HDR view
is obtained from the LDR video using the proposed methods.

notice any significant difference between an HDR-HDR pair
computed from HDR-LDR and a ground truth HDR-HDR ref-
erence. However, that work was limited to static images. This
paper extends that work to compute SHDR video.

The most successful method presented by Selmanovic et al.
[13], based on using stereo correspondence, is extended to gen-
erate SHDR video here, and while found to perform well, it
does suffer from some issues when extended into the temporal
domain. In this paper a further two methods are presented. One
uses a novel expansion operator which extends the dynamic
range of the LDR image based on the HDR data. The second
approach combines the other two methods and exploits the ad-
vantages of both. It uses stereo matching for overexposed and
underexposed pixels and expands the rest. These three methods
were compared to ground truth SHDR videos where both views
were captured using an HDR camera. Objective measurements
tested temporal and spatial qualities of all the methods over five
video sequences.

2. Related Work

Three major concepts need to be considered when develop-
ing a technique for generating SHDR video: image and video
capture using asymmetric sensors, image plus depth video cap-
ture, and stereoscopic high dynamic range imaging.

2.1. Asymmetric Sensor Imaging
The concept of using camera sensors of different qualities

and combining them to produce enhanced viewing experience
has been employed before. Sawhney et al. [14] proposed
a method in which high spatial resolution stereoscopic video
(at least 6,000 horizontal pixels) was generated from a pair of
videos with asymmetric resolution. One video was of target
resolution (e.g. 6, 000 pixels) while the other was typically a
quarter of the size. Stereo correspondences between two frames
in a pair were calculated. Neighbouring frames helped increase
the robustness of the correspondences especially for occluded
regions and an alignment map identified mismatches. The high
resolution image was then warped using a disparity map to gen-
erate a novel view and mismatched pixels were obtained from
the upsampled low resolution image. Two video sequences
were used to test the approach. The number of misaligned pix-
els was used as the objective performance measure. Results
were given for a single frame from each sequence and less than
1.4% misaligned pixels were reported for both.

Lo et al. [15] tested whether rendering times of stereo im-
ages could be decreased by reducing the resolution of one of the
views while still preserving the same image appearance. The
approach utilised binocular fusion - a process in which the HVS
fuses two percepts presented to each eye into a single view. A
single rendered scene was used for testing. In the stereoscopic
asymmetric test condition, the resolution of one image in the
pair was decremented in 10 steps generating 10 novel images
while the other was kept at the maximum. Such images were
compared to the ground truth (GT) - a stereo image were both
views had maximum resolution of 800 × 800 pixels. Results
showed that less than 15% of participants could differentiate
between the GT and the image pair with one image at the re-
duced resolution of 640 × 640. Once the image was reduced
to 320 × 320, more than 50% of participants could detect the
difference.

Bhat et al. [16] suggested an approach for enhancing low
quality video using high quality photographs. Correspondence
between image and video data was found using multiview
stereo, and structure from motion algorithms. Then, the spatial
and temporal gradient fields were used to transfer properties
of photographs (e.g. spatial resolution, lighting and dynamic
range) onto a video. The technique could also be used for ob-
ject removal, shake reduction and more efficient video editing.
However, the method was limited to static scenes only. The au-
thors reported very slow computation speeds (five minutes per
single low resolution image), but suggested that they could be
improved. Quantitative results were lacking and only one im-
age to illustrate each application was provided.

A large scale multiple sensor approach was proposed by
Wilburn et al. [17]. They constructed a matrix of low quality
cameras whose outputs were combined to produce high quality
video (comparable to the one captured using expensive high end
consumer products). Applications of this approach included
video of increased resolution, better frame-rate and higher dy-
namic range. It could also simulate camera motion and large
camera aperture. The method could potentially be modified to
capture SHDR video, but this was not examined. The system
consisted of 100 camera sensors, lenses and processing boards.
These were connected and controlled by four PCs. Engineering
an entire system may require considerable assembly rendering
it impractical for everyday situations. Both compressed and un-
compressed video could be stored before processing and the au-
thors reported that two and a half minutes required 2 GB when
MPEG compressed.

2.2. Image Plus Depth Capture
Imaging sensors have also been combined with depth sen-

sors allowing for image based rendering of the second view (or
multiple views). ZCam [18] measured the time that projected
infra-red light took to reflect back to the sensor. This measure-
ment inferred the distance of objects to the camera. Similarly,
Kawakita et al. [19] used an infra-red LED array for captur-
ing depth with their HDTV Axi-vision camera at a resolution
of more than 920,000 pixels at 30 frames per second. Alterna-
tive methods described by Scharstein and Szeliski [20] project
a structured light pattern onto a scene. Shapes and distances
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of the objects caused distortions in the pattern which was anal-
ysed to obtain depth. A limitation of all the mentioned methods
is the range and the precision of captured depth data. For exam-
ple, ZCam had range from 1 to 10 m with resolution of 0.5 cm
(for distances of 1 m) while Axi-vision had unreported range
with resolution of 1.7 cm (for distance of 2 m).

2.3. Stereoscopic High Dynamic Range Imaging

Lin and Chang [21] suggested a method for creating HDR
images using stereo. An image pair was taken at a different
exposure levels and combined to generate HDR images us-
ing stereo correspondence. Capturing SHDR by modifying the
method would required only two LDR cameras making the ap-
proach appealing, inexpensive and practical. However, to gen-
erate a reliable disparity map required image warping, the num-
ber of over- and under-exposed pixels had to be minimised,
which limited the potential dynamic range of the generated
HDR image. This was shown in the examples provided by the
authors.

SHDR imaging was first proposed by Selmanovic et al. [22].
In their work they examined five different methods for com-
pressing SHDR data. All were backwards compatible with tra-
ditional and LDR stereo image viewers. Initially, each image
in the pair was compressed using JPEG-HDR [23] coding but
similar approaches could have been used as well. After that ini-
tial step, two of the methods relied on LDR stereo techniques
to store images in a side-by-side and half side-by-side fashion.
The other two methods used image-based rendering and ex-
ploited low frequency, low range and single channel attributes
of the disparity map for coding. The final technique relied on
motion compensation and produced the best quality per bit rate
results.

Selmanovic et al. [13] have explored how to generate static
SHDR images from an HDR-LDR camera pair. They proposed
two general approaches and tested two methods for each. The
first approach was based on expansion operators where the dy-
namic range of the LDR image was expanded. Parameters
used for expansion were set using the information present in
the HDR image. Two expansion operators were tested: lin-
ear scaling [24] and the expand map technique [25]. The sec-
ond approach relied on stereo correspondences. A single expo-
sure was extracted from the HDR image, so its dynamic range
matched that of the LDR one. Then pixel correspondences be-
tween the two LDR images were found and the disparity map
was obtained. A new HDR image was generated by warping the
existing HDR image using image-based rendering techniques.
Two stereo matching algorithms were tested: sum of absolute
differences (SAD) [26] and a correspondence with occlusion via
graph cuts (COGC) technique [27]. In a user study all four
techniques were compared to the ground truth (GT)- both im-
ages of stereo pair captured using an HDR camera. Results
showed that the SAD technique was indistinguishable from GT
and the second closest was COGC. Expansion operator tech-
niques performed worse than stereo correspondence ones and
took the last two places. Also it was shown that objective and
subjective measurements were correlated.

3. LDR to HDR Methods

As discussed previously, the aim of this work is to generate
SHDR video from an HDR-LDR stereo video pair. In essence,
one HDR view is missing and needs to be reconstructed using
the available LDR video as a guidance. The LDR image cap-
tures only a subset of the full range, it is scaled and quantised
appropriately into an 8-bit range (per channel). Generating an
HDR frame from the LDR frame is an ill-posed problem for
which an exact solution cannot be found as the required data is
missing and can only be estimated.

Overexposed and underexposed regions in the LDR stream
are outside the captured range, lack any information, and are
difficult to reconstruct on their own. Out-of-range pixels may
be recovered from the HDR stream which may contain those
missing regions. However, the two streams are not aligned, so
mapping between pixels in the left and the right image depends
on the depth of the imaged object from the camera.

We propose three techniques for generating SHDR video
from an HDR-LDR stereo video pair. Two of them tackle a sub-
set of challenges discussed above. A stereo matching approach
utilises the disparity map to generate HDR frames while an ap-
proach based on expansion operator is concerned with mapping
LDR to HDR values. The last technique combines the merits of
both achieving the best reconstruction of HDR data as shown in
Section 4.

3.1. Stereo Correspondence (SAD)

The stereo correspondence approach relies on a disparity
map to transfer data between HDR and LDR view. Imaged ob-
jects are projected to pixels which are horizontally offset in the
stereo image pair depending on their distance from the camera.
The disparity map provides these offsets and hence connects
pixels representing the same 3D point in both views. This al-
lows for the correlation of HDR data from one image with its
counterpart in the LDR image making it possible to transfer
values.

The calculation of the disparity map is a challenging problem
and hundreds of methods have been proposed [28]. In general,
they compare differences of pixel intensities between the two
views and try to minimise these by offsetting regions in one of
the views.

In the study by Selmanovic et al. [13] the best identified
method was the sum of absolute differences (SAD) method. For
each pixel SAD finds the correspondence by looking for the
pixel in the other image which generates the smallest absolute
difference between the two. In order to reduce ambiguity, a
window of neighbouring pixels is used. The error of selecting a
specific pixel can be formally expressed as:

S AD(x, y) =
∑

k∈R,G,B

∑
(i, j)∈W(x,y)

|Ik,1(x+i, y+ j)−Ik,2(x+dx+i, y+ j)|

(1)
where W(x, y) are pixel coordinates of a window located at
(x, y), Ik,l(x, y) are the intensity values of k-th channel of l-th
image at (x, y), dx is a horizontal image disparity, and S AD(x, y)
is the value representing the difference between the compared
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Figure 2: HDR-LDR stereo correspondence pipeline finds spatial matches be-
tween HDR and LDR pixels and uses them to guide warping of existing HDR
image, thereby generating a novel HDR view.

regions. The disparity d is selected using a winner-takes-all
(WTA) technique where pixel generating smallest S AD cost is
chosen.

A detailed pipeline for generating an HDR image using the
SAD method is shown in Figure 2. Without any loss of general-
ity the left frame is considered HDR and the right is considered
LDR. First a single exposure is selected from the HDR frame
to match that of the LDR one. This is achieved by minimising
the difference between histograms of the existing and extracted
LDR image. Values obtained in this step can be transferred to
the next frames to speed up the process. Both LDR frames are
then transformed to Lab colour space which approximates hu-
man vision and aspires to perceptual uniformity. This means
that the differences between channels of the left and right frame
are related to perceptual differences; such differences are more
perceptually accurate than if RGB space were used. Next, the
SAD algorithm is used to compute the disparity map between
stereo frames. The disparity map then guides image warping
[29] of the available HDR image thereby generating a novel
view.

The SAD stereo matching algorithm can compute the dispar-
ity map in real-time on a standard PC. The technique transfers
actual HDR values to the new position in the other view and
so avoids intensity quantisation. While the calculated dispar-
ity map can be noisy and incorrect offsets can be present, the
algorithm always connects pixels which are close in intensity
making it particulary efficient for the generation of the novel
stereo view. Selmanovic et al. [13] suggest that such approach
for stereo matching was why SAD technique outperformed the
other methods in their study.

The overexposed and underexposed pixels are also trans-
ferred but can end up in the wrong position. As all the values
in those regions have the same value (0 or 255) it is not pos-
sible to perform accurate matching. This is especially the case
for larger regions where, even with increased window size, it
may not be possible to find a pixel within the captured range.
Disparity maps for such areas contain constant values. The first
tested disparity value is selected by the WTA technique as all
the others have the identical SAD cost. Details in these regions
are present but may be out of place, and may be perceived as
being at the incorrect depth (Figure 11, inset B). Another chal-
lenge it that of representing view dependent phenomena, such
as occlusion (Figure 11, inset A), reflective objects, and spec-
ular highlights. Data for those might be missing from one of

the views. However, SAD finds perceptually close intensities
for those pixels (albeit from the spatially incorrect positions)
which can alleviate the problem to an extent. Such mistakes
were not perceived due to binocular fusion for static images
[13], but they will cause temporal noise for videos as they are
not temporally consistent (Figures 9c and 9f). Thus, the main
disadvantage of this approach is potential temporal incoherence
due to incorrect disparity matches.

3.2. Expansion Operator (EO)
Expansion operators take an LDR image as an input and pro-

duce an HDR image as the output. Multiple approaches have
been proposed [8]. One of the state-of-the-art operators - Ban-
terle et al.’s [25] inverse tone mapper that was evaluated as the
best expansion operator in a user study [30] - did not perform
well when converting HDR-LDR image pairs to SHDR images
[13]. When expanding the image such operators take a small
number of parameters (e.g. three in the case of the tested one
[25]) which control overall brightness of the final image and its
peak value. While this is convenient method of adjusting the
output, the lack of control means that expanded images are less
likely to correspond to the actual values of the imaged scene.
For example, the peak luminance parameter influences range
and brightness of the expanded image, but such a value is fre-
quently a result of noise (when original HDR images are cap-
tured). So using some existing HDR image as the means of set-
ting this parameter is unlikely to produce appealing results so
user input is required. Expansion operators are not very suitable
for reconstruction of the LDR view for SHDR because discrep-
ancies from the original can be large, and not possible to fuse
through binocular single vision [13]. However, for the HDR-
LDR pair case, it is possible to create an expansion operator by
finding a mapping between the original HDR and LDR values
by using the HDR as a reference. The problem is similar to the
one faced by Mantiuk et al. [31] where HDR video was com-
pressed by using a residual stream together with a tone mapped
stream. It was assumed that TM operator was unknown so the
correspondence between the HDR and tone mapped values had
to be calculated for the decoder. As HDR and LDR pixels are
spatially aligned it was possible to put HDR values into the cor-
responding 256 LDR bins. As this is a many-to-one mapping
multiple HDR values would be assigned to single bin. Man-
tiuk et al. [31] used the arithmetic mean to find a single value.
We extend and modify the approach to generate an HDR im-
age from the LDR one. The reconstruction function (RF) which
maps LDR to HDR values is calculated as follows. All the HDR
values are ordered. Then, an HDR histogram with 256 bins is
created to emulate the LDR one, by putting the same number of
HDR values into each bin as there are LDR values in that bin.
Formally, this is expressed as:

RF(c) =
1

Card(Ωc)

M(c)+Card(Ωc)∑
i=M(c)

chdr(i)

where Ωc = { j = 1..N : cldr( j) = c}

(2)

c = 0..255 is an index of a bin Ωc, Card(·) is the cardinality
function which returns the number of elements in the bin, N

4



Left HDR Frame

Right LDR Frame

Dynamic Range 
LUT Calculation

LUT Table

Expand Image
Expanded Right HDR 

Frame

Figure 3: HDR-LDR expansion operator pipeline calculates intensity corre-
spondences between LDR and HDR values and saves them in the look-up ta-
ble. Expansion is performed by assigning HDR values from the table to the
LDR ones.

is the number of pixels in a frame, cldr( j) are channel intensity
values of the j-th LDR pixel, M(c) =

∑c
0 Card(Ωc) is the num-

ber of pixels in the previous bins and chdr are channel intensity
values of all HDR pixels sorted in ascending order.

The pipeline to generate an HDR image using this approach
is shown in Figure 3. The look-up table (LUT) is calculated
using Equation 2. Once the LUT is obtained expansion can
be performed quickly in a straightforward manner where each
LDR value is assigned a corresponding HDR value from the
table. It is possible to re-use the LUT across frames and it can
be used to improve temporal quality by filtering.

The proposed method of generating SHDR video from HDR-
LDR video stream using expansion operator is quick and can be
implemented in real time. Expansion is not view dependent and
does not suffer from the same problems stereo matching would
in occluded regions. Generated HDR values only depend on
captured HDR and LDR streams which are temporally coher-
ent and the method is not expected to introduce flickering. The
main drawback of this approach is the lack of a facility to ex-
plicitly handle overexposed regions which are of constant, max-
imum value without any detail. While fusion can also help in
those areas differences are frequently high and noticeable (Fig-
ure 11, insets B, C, D and E).

3.3. Hybrid Method (HY)

The methods described above both have distinct sets of ad-
vantages and drawbacks. Hence, we propose a novel method
which combines the two, trying to obtain benefits of both while
minimising disadvantages. Effectively, the hybrid method at-
tempts to do well in in-range regions using techniques based on
the expansion operator, for example occluded regions are han-
dled more robustly. It also is able to handle out-of-range pixels
using methods based on SAD, albeit with a further correction
step.

An overview of the technique is displayed in Figure 4. Both
an expanded HDR frame and a warped HDR frame are gen-
erated. Overexposed and underexposed regions are identified
using thresholding of the LDR frame, where a pixel is deemed
out of range if the value of one channel is above or below a pre-
defined threshold (e.g. above 250 or below 5). The out-of range
pixels are assigned the warped frame data. The rest of the pixels
are taken from the expanded HDR frame. The expanded frame
is generated using the same approach described above while the

Figure 4: The broad pipeline showing generation of right HDR frame given
left HDR frame and right LDR frame. Dynamic range expansion and stereo
matching techniques are combined using out-of-range map as a threshold.

Figure 5: Modified disparity map generations interpolates disparities for the
out-of-range region from its neighbours. Disparities generated in this manner
that are likely to cause artefacts are replaced by the SAD generated ones.

SAD pipeline is adapted so it reconstructs out of range regions
more accurately.

As described in the previous section, overexposed and under-
exposed regions lack any data and as such cannot be matched.
SAD method assigns the first tested disparity value to those re-
gions, which for some cases may be correct. However, it is
more likely that out-of-range areas have disparities similar to
the neighbouring ones. For this reason, the hybrid method inter-
polates disparities for overexposed and underexposed regions
from well exposed edges. This modified stereo correspondence
path is shown in Figure 5.

Stereo matching is performed on the images transformed to
the Lab colour space in the same manner described above. In
addition, a map identifying out-of-range regions (generated by
thresholding) is used as an input. The edges of overexposed
and underexposed areas are found using any of the edge detec-
tion methods. In our implementation we use a morphological
edge detection technique [32] because of its speed. Image dila-
tion expands overexposed and underexposed regions in out-of-
range map. Edges are found by subtracting the original out-or-
range map form the dilated one. The edges are on the outside
of the out-of-range regions where robust disparities values are
expected. Once edge pixels are identified, smooth interpolation
is performed inward. A comparison of the map generated using
SAD and the interpolated approach are shown in Figure 6.

During interpolation, foreground objects can influence dis-
parity values of out-of-range background areas and viceversa.
This may result in artifacts around such objects as values of
foreground objects being transferred to the background, as
shown in Figures 7b and 7c. Such artifacts are identified by
warping the extracted exposure of the HDR image using the
interpolated disparity map and subtracting it from the origi-
nal LDR image. Differences above the provided threshold are
recognised as artifacts. In order to correct for these pixel dis-
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(a) SAD Disparities (b) Interpolated Disparities

Figure 6: The disparities for overexposed regions generated using SAD method
(a) are less smooth compared to ones obtained using interpolation (b).

(a) GT

(b) A: Artifacts (c) B: Artifacts

(d) A: Corrected (e) B: Corrected

Figure 7: Artifacts caused by interpolation are identified and corrected.

parities computed by SAD are used instead. SAD matches are
also potentially incorrect as they connect overexposed pixels.
However the error in intensity will likely be smaller than the
one caused by transferring well-exposed values from the fore-
ground object. Results of this correcting step are shown in Fig-
ures 7d and 7e.

4. Results

In order to demonstrate the efficacy of the proposed methods
the methods are compared with each other and GT. The way
in which the GT videos were obtained is explained next, after
which the results of quality evaluation are provided.

4.1. Materials

Ground truth SHDR videos, consisting of HDR-HDR video
pairs, had to be obtained in order to enable comparison with the
proposed methods. As mentioned in the introduction, camera
systems which record two native HDR videos simultaneously
do not currently exist and are currently difficult to construct. In
order to overcome that challenge we employed three techniques
for capturing SHDR video data.

(a) Scene 1 (b) Scene 2 (c) Scene 3

(d) Scene 4 (e) Scene 5

Figure 8: The example frame from each of the tested SHDR scenes. For illus-
trative purposes frames are tone-mapped and displayed as anaglyph stereo.

Two static scenes (Scene 1 and Scene 2) were recorded using
stop motion by mounting a camera (Canon 1Ds Mark II) on
rails and moving it laterally, in small steps (0.5 cm). At each
step seven exposures separated by 2 stops were captured and
later merged to produce individual SHDR video frames. As
the movement was horizontal and orthogonal to the optical axis
it was possible to obtain both views. Video for one eye was
delayed by 13 frames which corresponded to a camera shift of
6.5 cm - approximation of average interocular distance.

Scene 3 and Scene 5 were dynamic and recorded using a na-
tive HDR video camera [10]. Two takes, one for each eye, were
required as only a single camera was available. Object move-
ment in the scene needed to be exactly repeatable between the
takes. To this end a high precision robot arm which folded alu-
minum sheets, and a disco ball that rotated were recorded.

The final scene was computer generated (Scene 4) using a
virtual stereo camera rig that output HDR images. Tone mapped
frames from each of the sequences are shown in Figure 8

All videos were captured and computed in full high defini-
tion (1920 × 1080 pixels). The two dynamic scenes were cap-
tured at 30 frames per second (fps), the computer generated one
was at 24 fps, while for static scenes it was possible to choose
any frame rate. A robust measurement of the dynamic range
was obtained by disregarding the top 1 ‰ and bottom 1 ‰ of
the values in the frame; this is used to avoid extreme values
caused by noise. It varied between the scenes and individual
frames, peeking at 16.6 stops for Scene 4, and having minimum
at 11.1 stops for Scene 5. Length also varied between the se-
quences where Scene 5 was the longest containing 720 frames
and Scene 4 was shortest with 240 frames. Videos contained
regions which would test the limits of the proposed methods in-
cluding out-of-range areas, view-dependent phenomena, cam-
era movement and object movement. Data for all sequences is
summarised in Table 1

4.2. Objective Quality Measurements

Objective measurements were used to evaluate the quality of
each method. To estimate the error of the individual frames
peak signal to noise ratio (PSNR) was used. It represents the
ratio between the maximum possible value of an image (sig-
nal) and the power of noise which affects its quality. The mea-
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Table 1: Video data for each sequence: the average and maximum dynamic
range (in stops) and the total number of frames

Data Average DR Maximum DR Frame No
Scene 1 12.3 14.1 287
Scene 2 13.4 14.8 432
Scene 3 12.3 12.7 368
Scene 4 16.3 16.6 240
Scene 5 12.1 13.1 720

Table 2: Peak Signal-to-Noise Ratio (higher is better)

Method HY SAD EO
Scene 1 51.88 48.77 48.77
Scene 2 45.77 42.26 40.34
Scene 3 48.76 46.66 45.42
Scene 4 54.26 37.29 34.33
Scene 5 59.14 51.97 48.54
Average 51.96 45.39 43.48

surement is logarithmically scaled making it especially suit-
able for images of high dynamic range, because the HVS sys-
tem responds to the intensity of light approximately logarithmi-
cally [33, 34]. It was also shown to correlate with subjective
measures in case of generating SHDR images from HDR-LDR
stereo pair [13]. The averaged values for all the scenes and all
the methods are shown in Table 2 where higher value repre-
sents better quality. Results for individual frames are presented
in Figure 12.

As expected, the hybrid (HY) method outperformed the other
two achieving the best score for all tested scenes. The SAD
technique achieved better results than the EO one for all the
scenes. The score difference was greater between HY and SAD
than between SAD and EO.

In order to verify the temporal quality we propose a tempo-
ral quality (TQ) metric which is inspired by the metric used in
the work of Wan et al. [35]. Initially, images are converted to
logarithmic space to account for the perception of the HVS and
to avoid bias caused by high intensity values present in HDR
images. To find temporal differences in a stream two consecu-
tive frames are subtracted. This is performed for both the GT
video and the generated video. Temporal error introduced by
the generated video is identified by subtracting temporal differ-
ences of the generated stream from the GT stream. The error is
then weighted by the quality of the reconstructed frame. This
increases the inconsistency when there is a larger difference be-
tween generated and GT frames. Finally, values are aggregated
across all the pixels as shown in Equation 3:

T Q(t) =
1

Card(N)

∑
(x,y)∈N

ω(x,y)|(∆I1(x, y, t) − ∆I2(x, y, t))| (3)

where t is the frame number, N is the set consisting of all colour
channel values for all pixels in a frame, I1 is the logarithmi-
cally scaled GT frame and I2 is logarithmically scaled gener-
ated frame, ω(x,y) = |log(I1(x, y, t)) − log(I2(x, y, t))| + 1 is qual-
ity weight, I(x, y, t) is the intensity of a pixel at point (x, y) of

Table 3: Temporal Quality (lower is better)

Method HY SAD EO
Scene 1 0.0091 0.0128 0.0156
Scene 2 0.0038 0.0063 0.0072
Scene 3 0.0043 0.0064 0.0074
Scene 4 0.0009 0.0010 0.0014
Scene 5 0.0063 0.0129 0.0110
Average 0.0049 0.0079 0.0085

the frame t and ∆I(x, y, t) is difference between logarithmically
scaled consecutive frames as shown in Equation 4:

∆I(x, y, t) = log(I(x, y, t) + 1) − log(I(x, y, t + 1) + 1) (4)

The summary of TQ values, averaged across the video se-
quence, are shown in Table 3 where the smaller value represents
a better quality. Results for all the frames and all the videos are
provided in Figure 13.

Overall, HY method performed best and had the smallest er-
ror for all the scenes. SAD technique had better quality than the
EO technique for four scenes while EO outperformed SAD for
the last scene, which has the smallest average dynamic range.
As discussed in Section 3.2, this is expected as the EO method
should be, generally speaking, a preferable option to SAD for
HDR videos with a lower dynamic range.

Both calculated error metrics only took into account the sin-
gle generated view. The quality of the existing natively captured
HDR view was not taken into the account.

4.3. Qualitative Results

(a) GT

(b) Frame 1; GT (c) Frame 1; SAD (d) Frame 1; HY

(e) Frame 2; GT (f) Frame 2; SAD (g) Frame 2; HY

Figure 9: The SAD method may generate artifacts in the occluded regions
which are inconsistent across frames. The HY method recovers these pixels
using EO and avoids artifacts.

To complement quantitative metrics, Figure 10 illustrates the
different qualities of the methods. The provided example shows
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how EO does not manage to reconstruct any details in the out-
of-range regions while SAD and HY method appear similar, in
general. To show the differences between the two, selected re-
gions are presented in more detail in Figure 11. The inset A
shows the lamp leg which is not reconstructed well by the SAD
method, due to occlusion. The insets A and D contain occluded
areas (along the edges of the chairs), where the SAD method
made errors. Due to relying on the EO, HY method is able to
preserve the information available in LDR. For the overexposed
regions, shown in the insets B, C, D, and E, SAD lacks infor-
mation required for accurate matches and makes mistakes. The
HY method relies on interpolation to obtain disparities from
the neighbouring well-exposed pixels and is able to reconstruct
these regions successfully. The EO operator, as expected in this
case, lacks the required information for reconstruction.

Disparities calculated by SAD methods are noisy in low
frequency regions and in occluded areas resulting in artefacts
when generating HDR image, as shown in Figures 9c and 9f.
HY method achieves temporal consistency by using EO for out-
of range pixels (Figures 9d and 9g).

5. Conclusions and Future Work

In this paper we presented a method for capturing SHDR
video from HDR-LDR video. Three methods were proposed
and as expected the hybrid method outperformed the other two
in terms of the scenes shown due to taking advantages of both
methods, the expansion method for in-range pixels and the SAD
method with a correction step for out-of-range pixels. While
the results are good, they are only based on the reconstructed
view, so better results would be expected if binocular fusion
was taken into account. Since no objective metrics exist to do
so, future work will investigate the possibility of a user study
similar to the one for static SHDR images [13], to identify if
there are further gains in the proposed technique; however, this
is not straightforward, as comparing videos with a reference is
significantly more complex than comparing static images. De-
veloping a perceptually based metric for measuring spatiotem-
poral quality of SHDR video is an aim of future work.

This work serves as an enabling method for SHDR video to
be adopted without having to await SHDR video capture de-
vices, which may take a while as HDR video is still very much
in its infancy.
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GT

EV: +4; EO EV: +4; SAD EV: +4; HY

EV: 0; EO EV: 0; SAD EV: 0; HY

EV: -4; EO EV: -4; SAD EV: -4; HY

Figure 10: The reconstructed frame from the SHDR pair for all methods for Scene 1 are presented. GT is tone mapped. For each method three single exposures are
selected and shown.
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Scene 1

A: GT A: EO A: SAD A: HY

B: GT B: EO B: SAD B: HY

C: GT C: EO C: SAD C: HY

D: GT D: EO D: SAD D: HY

E: GT E: EO E: SAD E: HY

Figure 11: Detailed insets for the reconstructed SHDR frame chosen from Scene 1 showing GT, EO, SAD and HY. All images are shown at the appropriate single
exposure.
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Figure 12: PSNR results for all the scenes an all the frames. Higher is better
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Figure 13: Temporal quality (TQ) results for all the scenes an all the frames. Lower is better.
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