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Abstract

High Dynamic Range (HDR) imagery has made it possible to relight virtual objects accurately with the captured
lighting. This technique, called Image Based Lighting (IBL), is a commonly used to render scenes using real-world
illumination. IBL has mostly been limited to static scenes due to limitations of HDR capture. However, recently
there has been progress on developing devices which can capture HDR video sequences. These can be also be
used to light virtual environments dynamically. If existing IBL algorithms are applied to this dynamic problem,
temporal artifacts viewed as flickering can often arise due to samples being selected from different parts of the
environment in consecutive frames. In this paper we present a method for efficiently rendering virtual scenarios
with such captured sequences based on spatial and temporal clustering. Our proposed Dynamic IBL (DIBL)
method improves temporal quality by suppressing flickering, and we demonstrate the application to fast previews

of scenes lit by video environment maps.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism—Raytracing

1. Introduction

Real world lighting is often an essential component of many
rendering systems. This lighting is commonly captured from
all directions on a (hemi)sphere at a single point using HDR
capture which is capable of acquiring the entire lighting of
an environment. The resulting Environment Map (EM) is
then used in rendering systems to accurately relight virtual
scenes. This finds use in a large range of applications; from
video games to architectural design [DBB02]. Many of the
algorithms used in these scenarios have been specifically
designed to deal with static lighting environments encod-
ing distant real-world lighting at a single time point. How-
ever, recently, the ability to capture HDR video sequences
[CBB*09] has made it possible to compute animations lit by
dynamic environments. In this more general case of light-
ing from Video Environment Maps (VEM), the algorithms
which are designed for static lighting are less optimal, and
often lead to a significant drop in temporal quality over an
animation sequence. This is especially noticeable in interac-
tive rendering algorithms which approximate the lighting en-
vironment by a small set of Virtual Directional Light (VDL)
sources. If conventional sampling strategies are used there
may be large jumps in the directions of the VDLs across
consecutive frames which lead to noticeable flickering in an
image sequence rendered with DIBL.
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In this paper, we present a novel approach to maintain
temporal quality. Our approach relies on an observation
about DIBL sequences: there are large regions of similar lu-
minance throughout most sequences, interspersed with infre-
quent jumps in luminance. We therefore exploit this natural
coherence in these sequences through a two stage process;
firstly generating a set of VDLs for all the frames of a se-
quence, then, secondly, clustering them to minimise flicker-
ing. As we pre-determine the total number of clusters, our
method also has the additional advantage of automatically
placing more clusters in high frequency regions in the 4D
space of directions, luminance and time.

The main contribution of this paper is a clustering algo-
rithm over unbiased samples taken from the VEM which re-
duces temporal artefacts. This method works by generating
a 3D volume of samples over all the frames in a VEM, and
performing clustering over their 4D properties. Using this
method, we obtain a significant improvement in temporal
quality for DIBL.

This paper is structured as follows; Section 2 details some
of the relevant related work, Section 3 details our cluster-
ing method for reducing flickering, Section 4 shows results
for our algorithm. Finally, conclusions and future works are
presented in Section 5.
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2. Related Work

Accurately calculating the lighting in rendering systems is a
costly task. This is only made more complicated with the ad-
dition of complex real world lighting from HDR EMs. This
section looks at existing methods of handling both IBL and
DIBL. In particular, we focus on just the methods that sam-
ple directly from the environment rather than a combination
of the EMs and surface reflectance.

2.1. Image Based Lighting

Introduced by Blinn and Newell [BN76], then extended by
Debevec [Deb98] to use HDR images to represent real world
lighting. Much work has focused on improving the sam-
pling techniques of EMs. Importance sampling [PH10a] has
been used to effectively generate samples for diffuse scenes.
Agarwal et al. [ARBJ03] developed a method called Struc-
tured Importance sampling that stratifies the EM into regular
strata based on luminance and predicted occlusion from the
scene which allows for speedup in occlusion calculations.
Debevec [Deb05] applied a median cut algorithm to EMs
that separated it into rectangular regions based on luminance
and placed light sources at the brightest points.

Bidirectional importance sampling [BGHO5] it a tech-
nique that samples from the product of the EM and the Bidi-
rectional Reflectance Distribution Function (BRDF), based
on rejection sampling. However rejection sampling can be
very expensive with no guaranteed run time. Resampled
importance sampling [TCE0O5] generates samples by firstly
generating a large set of samples and then resampling from
that set. Unlike the other methods the samples drawn that
are approximately distributed according to the desired prob-
ability density function. This method can be costly as a very
large initial set of samples must be generated to achieve good
results.

2.2. Dynamic Image Based Lighting

Liang et al. [WWLO5] built a spherical qz—tree from the EM
and adapted it frame by frame based on changes in the lu-
minance. This method only repositions light sources in ar-
eas of the EM where the luminance has changed signifi-
cantly, therefore reducing flicking. this work was then ex-
tended [WMWL11] into a spatiotemporal sampling method
that pre processes the VEM into spatiotemporal volumes.
These are used to create VPLs that are shared across frames,
further reducing flickering and improving rendering qual-
ity. However this method can lead to a waste of samples in
low-energy regions because of how it stratifies the VEM into
rectangular-subvolumes.

Havran et al. [HSK*035] extended their previous work
[HDSO03] on mapping the unit square to a uniform hemi-
sphere into a DIBL method. They used this to create a set
of representative directional light sources which are filtered

over time to reduce flickering. The luminance of the lights
are redistributed to create a smoother animation, however
this redistribution introduces bias and the resulting images
will not conform to ground truth.

Ghosh et al. [GDHO06] introduced an algorithm that uses
bidirectional importance sampling for the first frame of the
VEM and then propagates the samples for further frames. It
uses a Markov Chain Monte Carlo (MCMC) transition ker-
nel to redistribute the samples.

3. Light clustering

Image based lighting generates images lit from an EM via
solving the rendering equation [Kaj86] at a specific point x
in the scene:

Lo(r,0,1) = /Q £, 0,0 )L( 1) cos®de (1)

Where L, is the outpoint radiance in the direction , ¢
is the time at which the image is rendered, i.e. the frame
in the VEM, Q is the positive hemisphere above x. f; is
the bidirectional reflectance distribution function BRDF, and
L(®',?) is the incoming radiance from direction ®’. This in-
tegral is commonly solved through approximating the EM as
N VDLs. Therefore, Equation 1 can be approximated as:

Lo(x,0,t) =~ N (@ 1) )

1 ﬁ fr(x,0,0))L(w},1)cos®
i=0

where p(®},) is the probability density function for gener-
ating the i’th VDL. This procedure of generating samples is
known as importance sampling. If p(w},?) is proportional to
L(w},?), variance in the image from sampling the lighting
environment will be minimised. However, when the appli-
cation is for fast, or interactive image previews, N will be
small. When this is the case, samples may randomly jump
around the EM (even if quasi-random sampling [Nie92] is
used). Therefore, to keep the benefits of sampling propor-
tional to the lighting, but to minimise flickering, we propose
a clustering based method.

The method has two major parts, all of which are carried
out as preprocessing steps:

o The first is the initial sampling of the VEM.
e The second is the clustering of these samples and creating
light sources from the clusters.

The following section describes this process in more detail.

3.1. Initial Sampling of the VEM

The method starts by sampling each of the individual frames
of the VEM, creating a large number of samples to then
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Figure 1: Top: Importance sampling of frame with 256 samples. Bottom: Light positions after clustering of samples using 56
clusters.

be used by the clustering algorithm. Importance sampling
[PH10a] was selected as it generates samples only from the
EM, rather than a combination of the EM and the BRDF,
meaning that the samples are independent of the scene ge-
ometry and therefore the cluster will not need to be recreated
for different scenes. It will also generate more samples in
high frequency areas of the EM naturally, allowing them to
be clustered more effectively and to more accurately repre-
sent, even with N discrete samples, the lighting information
present in the EM.

3.2. Clustering

Once the samples have been generated they can be clustered
into representative light sources that are shared across many
frames of the animation. To take advantage of the tempo-
ral coherence the clustering will not just be performed on
the positions of the samples, but also based on their lumi-
nance and by time. Samples are being clustered by time to
take advantage of temporal coherence and to encourage the
creation of clusters with samples in consecutive frames. The
luminance of samples will also be taken into account as it
will reduce the chance of high frequency samples being lost
due to being clustered with low frequency samples.

K-means [For65] clustering was the clustering algorithm
used. It was chosen over other clustering algorithms as it is
fast (O(nlogn) where n is the number of samples), and is
centroid based. This means that it will cluster samples based
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on their distance from the central point of the cluster, rather
than based on a distribution or density of samples. Another
benefit of this method is that it will assign every sample to
a cluster, where other methods would classify some samples
as noise and then ignore them.

The outline of the K-means algorithm is given below:

1. Select k random samples to be the initial centres of the k
clusters.

2. Assign each sample to its closest cluster.

. Recalculate the centre point of each cluster.

4. Repeat step 2 and 3 until no samples are reassigned to
different clusters.

w

To use this algorithm a metric is needed to decide the dis-
tance between each of the samples that takes into account
position, luminance and time. A metric has been designed
for each of these and they can be combined to give the dis-
tance, Dy, between two samples, # and v, so that they can
be clustered. This will be defined as:

Du,v - 0(«Pu,v + BLM,V + 'YTu,v (3)

where Py, Ly,y and Ty, are the position, luminance and time
metrics respectively and o, § and 7 are the weightings for
each metric. Each of the metrics produce a value between 0
and 1 so that the weightings for each metric can be adjusted
for different scenes and to create clusters with different prop-
erties.
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3.2.1. Position Metric

There are two possible spaces that can be used to represent
the positions of the samples, texel space or as points on a
unit sphere. It is important for the clustering algorithm that
the second representation is used. This is because, in texel
space, the clusters will not be able to wrap around the edge
of the EM. This means that the position of sample will be
a unit vector representing a point on the surface of a unit
sphere. Then the angle between two samples will give the
difference in position of the samples and the metric can be
defined as:

arccos (- V)

Pu,v =
T

“
where # and v are the unit vectors representing the positions
of the samples u and v. In the above equation arccos is used
as it will give the angle between the two positions, the result
of which is divided by 7 in order to limit the results to the
range [0, 1].

3.2.2. Luminance Metric

The luminance metric can be defined by the difference in the
luminance between two samples. This can then be limited to
the range [0, 1] by normalising. The metric is given by:

|Lumy, — Lumy|

Lu,v = (5)

maxgyeo (Lume)

where Lumy, is the luminance of the sample u and Q is the
set of all samples.

3.2.3. Time Metric

Like the luminance metric the time metric is computed by
taking the difference in the index of the frame that contain
the samples and then normalising. The metric is given by:

_ lfru—frvl
Tuy = T (6)

where fry is the index of the frame that contains sample u
and X fr is the total number of frames in the VEM.

3.3. Light Source Generation

Once the clusters have been generated, representative light
sources can be created. For each of the k clusters one light
source is created that has the mean position of the cluster.
Then each cluster, k € K, the position, P(k), can be com-
puted as:

_ Zuekﬁ

P(k) I

O]

where # is the unit vector representing the position of sample
u and |k| is the number of samples in the cluster k.

As well as the position of the light source the cluster must
be given a time span based on the samples that the it con-
tains. So the light source for cluster k will appear in the
frames with indices in the range [fstars (k), fena(k)], where
fxtart (k) is minuék(fru) and fend(k) is maxyck (fru)~

Finally the radiance of the light source for each cluster
is computed. It is important to use the radiance from each
sample, so that each one is taken into account. The radiance,
R(k) of each light source is given by:

— Zuek Cu
fend (k) - fvtart (k) +1

R(k) ®)

where ¢, is the radiance of the sample u. The “+ 17 is in
the denominator as it is possible for a cluster to contain sam-
ples from only one frame and without it the result could be
undefined.

Calculating the radiance for the light sources in this way
will change the total light in independent frames of the re-
sulting animation, but the total light will remain the same.
This will introduce bias to some frames, but reduces tem-
poral flickering significantly, resulting in a smoother anima-
tion.

4. Results

Our method compares results with importance sampling.
Two methods have been used for comparison:

1. A temporal inconsistency metric that computes the in-
consistency of an animation by finding the difference be-
tween the rendered result and the ground truth.

2. A direct comparison of the positions of the clusters and
the samples generated by importance sampling over time.

The scene that has been used for the comparison uses
a VEM of the sun moving through the sky to light the
Kiti church model, as shown in Figure 4. For the clustering
method 512 clusters have been generated from 1024 initial
samples per frame. For the weightings of the clustering met-
rics we used o0 = 3, f = 3 and Y= 1. We compare this to im-
portance sampling with n samples per pixel, where n is the
average number of clusters that contribute to each frame. For
this scene, n = 200. The ground truth is also computed us-
ing importance sampling with 1024 samples per pixel. All of
the results are generated on a PC with an Intel(R) Core(TM)
17-2760QM quad core 2.40GHz processor using an unopti-
mised CPU physically-based renderer [PH10b]. Each image
is 512 by 512 pixels.

4.1. Temporal Inconsistency Metric

To measure the temporal inconsistency of our method we use
the metric outlined by Wan et al. [WMWLI11]. The metric
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Figure 2: Top: Example frames from the rendered results of our clustering method.

measures how similar each images are by using the mean
absolute error between the rendered results and the ground
truth. This is given by:

E() = 1 L oAXi(1) — A% (1) ©)

where X; is the intensity of the i in the 7th rendered frame
from a sampling method; X;(¢) is the counterpart of X;(¢) in
the ground truth; and N is the total number of pixels in the
rendered frame. The operator A(.) is the temporal difference
between two consecutive frames, so AX;(¢) = X;(¢t) — X;(r +
1). Finally the weighting factor, ®;, that weights the results
by the difference between the rendered result and the ground
truth is given by @; = |X;(t) — X;(t)| + 1. As this weighting
factor directly compares illumination of a sampling method
to the ground truth, this metric will also indicate the accuracy
of the resulting illumination. Using this metric a rendering
method can be said to be more temporally consistent if its
inconsistency values are closer to zero.

Figure 3, shows the inconsistency of each frame of the
two methods. It is clear that the inconsistency for our clus-
tering method is closer to zero for all frames in the anima-
tion. As well as the inconsistency of each frame, the average
inconsistency of the whole animation has been computed.
The average inconsistency of the importance sampling tech-
nique is 0.00262 while the average for the clustering method
is 0.00125.

4.2. Light Positions Over Time

Figure 4 shows the positions of clusters that contributed in
five consecutive frames of the VEM and figure 5 the po-
sitions samples generated by importance sampling for the
same frames (right column). The clustering method will pro-
duce results with less temporal flickering as between frames,
as the positions of the clusters do not move around the EM,
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while with the importance sampling method there is signifi-
cant movement of samples between the frames.

5. Conclusion and Further Work

In this paper we presented an approach to improve the tem-
poral quality of DIBL for rendering realistic animations. Our
method is based on two main passes; unbiased sampling of
directional lights from the VEM frames and then a cluster-
ing step to reduce flickering artifacts. Our results demon-
strate a significant improvement in performance over the
more straightforward method.

In the future, we plan to extend this work by experiment-
ing with different clustering algorithms, and using more so-
phisticated sampling techniques [TCE05]. We intend to ex-
periment with considering other possible dimensions and the
possibility of adapting the dimensions separately to further
improve the quality where it may be most required. Our
method only samples the EM, however for certain lighting
scenarios it would be more advantages to consider other
sampling distributions, for example the BRDF; in future
work we intend to investigate multidimensional sampling
methods for such challenging environments. Finally, our
method is ideal for animations, and can be adapted for real-
time scenarios in the future.
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Figure 4: Positions of the light sources generated from our clustering method shown over five consecutive frames.
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Figure 5: Positions of samples generated by importance sampling over the same five frames used in Figure 4.

submitted to EG UK Theory and Practice of Computer Graphics (2012)




