
submission to IEEE Computer Graphics and Applications (2010)

High-fidelity Interactive Rendering on Desktop Grids

Vibhor Aggarwal, Kurt Debattista, Thomas Bashford-Rogers, Piotr Dubla and Alan Chalmers

The Digital Lab, University of Warwick, UK

Abstract
High-fidelity interactive rendering has been traditionally restricted, to expensive shared memory or dedicated
distributed processors, due to the high computational cost. A desktop grid offers a low cost alternative by com-
bining arbitrary computational resources connected to a network such as those in a laboratory or an office.
However, prevalent interactive rendering algorithms are currently incapable of seamlessly handling the variable
computational power offered by the non-dedicated resources of a desktop grid. In this article, we present a novel
fault-tolerant algorithm for rendering high-fidelity images at an interactive rate which is capable of handling
variable resources. A conventional approach of rescheduling failed jobs in a volatile environment would inhibit
performance while rendering at interactive rates as the time margins are small. Instead, our method uses quasi-
random sampling along with image reconstruction techniques to deal with faults. This enables users to experience
interactive high-fidelity rendering on their desktop machines.
Keywords: interactive rendering, desktop grids, fault-tolerance, image reconstruction, high-fidelity rendering,
computer graphics, parallel computing

1. Introduction

High-fidelity rendering at interactive rates offers the poten-
tial for high quality imagery to be used as a regular tool
in many visualisation applications including special effects,
product appearance, building design and virtual archaeology.
This is essential for providing a good feedback to the user
for steering any visualisation towards a better solution. In the
context of rendering computer generated imagery, especially
for areas such as product visualisation, film industry or an
architectural walk-through, it would help an animator to ad-
just lighting conditions and object properties in the scene for
the best visual appeal. However, such interactive renderings
require large amount of computational power and thus are
traditionally rendered using dedicated parallel resources, of-
ten referred to as render farms. These dedicated render farms
are expensive, limiting the number of users who have access
to high-fidelity interactive rendering. In addition, only a few
implementations for high-fidelity interactive rendering exist
even on these dedicated machines, for example Benthin et
al. [BWS03] and Wald et al. [WKB∗02].

In this article, we present a novel method for achiev-
ing interactive high-fidelity rendering on inexpensive non-
dedicated machines such as desktop grids. The challenge of
using a non-dedicated platform is that it provides volatile

computational power with shared heterogeneous resources
and hence, fault-tolerant algorithms are required to achieve
the desired results in a timely manner. Our method effec-
tively enables the majority of users that work in small to
medium sized companies or universities to experience in-
teractive high-fidelity rendering on their desktop machines
when other user’s resources are left idling, without the ex-
pensive requirements of a dedicated render farm.

With the advent of multi-core desktop machines in recent
years, desktop grids have become an attractive option for low
cost distributed computing. Some of the cores of a multi-core
machine are not always in constant use. Therefore, having
such machines readily available on a desktop grid will en-
able organisations to maximise their usage. In an office or a
lab these idle CPUs can be a cheap source of computational
power. A desktop grid with a usually stable interconnect be-
tween the resources is commonly referred to as a local desk-
top grid. In this article, we use the term desktop grid to refer
to such kind of a desktop grid unless specified otherwise.
For more information on desktop grids please see Section 2
(Box).

On a volatile computing platform one of the two primary
fault-tolerance mechanisms, redundancy or checkpointing-
and-restarting (or a hybrid of the two) is typically em-
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ployed to deal with faults. Interactive rendering imposes se-
vere time-constraints on the system and these fault-tolerance
mechanisms are not well suited under such constraints as
they inhibit performance. Instead robust image space sam-
pling techniques such as quasi-random sampling along with
image reconstruction methods can be used to deal with
faults. If a job fails, image reconstruction algorithms can be
used to fill in the missing data.

The idea of combining sparse sampling with reconstruc-
tion has been used before (see for example in the render
cache [WDP99]) for ray tracing at interactive frame rates.
Our approach extends this idea by adapting sparse sampling
as a mechanism to enable fault-tolerance. When exploited in
the context of interactive rendering of high-fidelity images,
it allows the user to change the scene at run-time and receive
feedback without employing expensive dedicated resources.
This is interesting for any application which can benefit from
interactive hypothesis testing and in which creativity may be
stifled by the need to wait for significant periods of time be-
fore seeing any rendering results from a small change to a
model. To the best of our knowledge, our method is the first
desktop grid method to handle interactive rates and the first
within the context of high-fidelity rendering.

Our system would be useful for an architect or an archae-
ologist to visualise a building under different lighting condi-
tions. For a product designer it could provide a preview tool
for testing different object materials and an animator can use
it to have a quick look at characters in a fully rendered envi-
ronment before submitting the final frames to a render farm.
A user may not be able to try out all these different settings in
an off-line rendering environment as it is a time consuming
process and could use our system instead without any addi-
tional expense by just connecting all the available machines
into a desktop grid.

2. Desktop Grids (Box)

2.1. Desktop Grids

A computational grid can be defined as a distributively-
owned multiprogrammed large pool of heterogeneous
computing resources interconnected by telecommunication
channels. It is a multi-user, massively parallel shared re-
source environment with interconnected clusters, databases
and equipment spanning administrative and geographic
boundaries. The grid is viewed by Foster as a dependable,
consistent, pervasive and inexpensive access to high-end
computational resources [FK99].

A desktop grid is an example of a computational grid
which combines computational power from vast number of
desktop machines. Large computational power at a low cost
makes desktop grids an attractive option for many applica-
tions. As an example, Berkeley Open Infrastructure for Net-
work Computing (BOINC) projects which run on the world’s

largest desktop grids, utilise an average of 3.2 PetaFLOPS
from about 500,000 active hosts worldwide [BOI10]. This is
comparable to the 1.7 PetaFLOPS currently provided by the
world’s fastest supercomputer [TOP10].

A desktop grid is sometimes termed as volunteer com-
puting to reflect that the resource owners donate idle CPU
cycles without any guarantee of service. The idea of using
“cycle stealing” from desktop machines originated with the
PARC worm [SH82] which scanned a list of resource ad-
dresses and replicated itself on the idle hosts. Since then it
has been widely used for solving complex scientific prob-
lems, the most well known being the SETI@Home project
[ACK∗02]. SETI@Home analyses radio signals to search
for extra-terrestrial intelligence using idle CPU cycles do-
nated by volunteers all around the world.

The computational power provided by a desktop grid is
volatile because of shared resources, machine hardware fail-
ure and network congestion or failures. This poses a signif-
icant challenge when computing on a desktop grid and the
algorithms for utilising it need to cater for any failures. Ap-
plications that can be subdivided into independent jobs, with
high computation to communication ratio such that the num-
ber of jobs is much more than the available resources, are po-
tentially suitable for a desktop grid [CBS∗03]. A wide array
of scientific applications from various fields such as astron-
omy [ACK∗02], climate modelling [CAS05] and computa-
tional biology [LSS∗03] have been successful in harnessing
the power of desktop grids.

A local desktop grid contained within an institution is
beneficial for running applications which need greater con-
trol. Such a desktop grid offers more reliable and faster con-
nectivity of resources through a local area network. Applica-
tion deployment and development is easier on them because
the resources do not span many administrative boundaries
and geographic locations and consist of a limited number
of software platforms [Kon05]. A local desktop grid is suit-
able for scheduling parallel applications requiring a rapid
turnaround.
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Desktop Grids Box

3. High-fidelity Rendering

High-fidelity rendering is the process of synthesising images
by computing the light transport in a scene using physically-
based quantities. This calculation is performed by solving
the rendering equation [Kaj86]. The outgoing radiance at a
point p in direction Θ is given by:

L(p→ Θ) =

Le(p→ Θ) +
∫

Ωp

fr(p,Θ↔ Ψ)cos(Np,Ψ)Li(p← Ψ)δωΨ

where Le is the emitted radiance, Li is the incoming ra-
diance in the direction Ψ and fr represents the Bidirec-
tional Reflectance Distribution Function (BRDF). There are
two broad categories of solving this equation: finite-element
methods and point-sampling solutions. Our method for in-
teractive rendering on desktop grids is suitable for the point-
sampling solutions.

Monte-carlo integration is frequently used to estimate the
rendering equation. Many samples are required to reduce
the Monte-carlo noise, making the process computationally
expensive. This takes a long time to complete on a single
machine for even moderately complex scenes. Parallel com-
puting offers the potential to obtain results in a reasonable
time. Many parallel rendering solutions [CDR02] have been
proposed but most of them are focused towards expensive
closely-coupled machines. The prevalent parallel rendering
techniques are not suited for computing on non-dedicated
massively parallel systems which provide a cheaper alter-
native but with variable resources. The heterogeneity of re-
sources raises issues of load balancing and cross platform
computing. In addition, fault-tolerant rendering algorithms
are needed to cope with volatility of resources.

Previous algorithms [ACD08, CSL06] for off-line render-
ing on a computational grid relied on the fault-tolerance
provided by the grid middleware to tackle any faults. A
time-critical visualisation method for grid computing pre-
sented by Gao et al. [GLH∗08] used redundancy for fault-
tolerance. A time-constrained algorithm for rendering on a
desktop grid was presented by Aggarwal et al. [ADD∗09]
which used quasi-random sampling with reconstruction to
cope with faults. But this could only handle static images due
to its dependence on the grid middleware for job manage-
ment and could not achieve interactivity. The method pre-
sented here describes a novel system that enables interac-
tive rates, which would not have been possible by relying on

traditional grid middlewares for job management and fault-
tolerance.

4. Interactive Rendering on Desktop Grids

In this section, we discuss the design and functioning of our
method. It follows a master-worker paradigm using a job
pull mechanism [CDR02]. In this approach, workers ask the
master for work, process the input and then send the results
back to the master for composition. The workers do not com-
municate with each other. We schedule these workers on the
available resources of a desktop grid and they connect to the
master to fetch a rendering job. Workers can connect and dis-
connect at their own will and the master has no control over
this. This enables the method to employ variable resources
for parallel rendering. Each frame which needs to be ren-
dered is divided into quasi-random sets of pixels and each set
is queued up as a different job by the master. The number of
jobs per frame is much greater than the maximum number of
available resources for load balancing. If some of these jobs
are not completed, reconstruction is used for completing the
frame.

The overview of our method is presented in Figure 1.
First, the user interacts with the scene which defines the ren-
dering parameters for the frame. This frame is then divided
into sets of quasi-randomly chosen pixels which are queued
up as jobs. When an idle worker connects to our system, a
job from the queue is sent to it to process. Once the results
are received, the partial frame is sent to the Graphics Pro-
cessing Unit (GPU) for reconstruction and display. Figure 1
also illustrates the four possible states of any machine in the
desktop grid: receiving a job, rendering, sending results and
unavailable for computation. The following subsections pro-
vide the details about communication, scheduling, display
and reconstruction, and workers used in our method.

4.1. Communication

The master uses one thread per worker architecture for com-
municating with them for maximum throughput. We have
designed these threads such that they do not need to syn-
chronise with each other. Also, they use non-blocking data
structures while synchronising with the scheduler and dis-
play and reconstruction threads allowing the master to scale
efficiently with the increase in number of workers.

The master sends out a job packet from the front of the
job queue and then waits for the worker to process the job.
When the worker sends the results back, these are stored for
later compositing. The job packet consists of the following:

Frame Number identifies the frame to which this job be-
longs.

Set Number is used by the worker to identify which set of
quasi-random pixels it needs to render.

Scene State includes all the information which the worker
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Figure 1: The overview of our method showing the interactions inside the master and between the master and the desktop grid.

needs to render the correct view of the scene such as cam-
era position, object materials, object positions etc.

The job packet contains the absolute scene state rather than
having an update scene message, because a worker may or
may not receive all the update messages depending on which
frames it processes. This helps in synchronising the scene
state on all the workers processing a given frame. The result
packet contains the luminance values of the computed pixels
along with the frame number and the set number accord-
ing to which job was processed by the worker. As multiple
frames may be scheduled together, the master can receive
results for multiple frames at the same time. Therefore, an
array of results is used, and the frame and set numbers cor-
rectly identify the results. It is possible that a worker takes
too long a time to send back the results for a frame which,
by then has been displayed, in such a case these results are
discarded and a new job is sent to the worker.

4.2. Scheduling

The computing power of a desktop grid is time-variant and
hence, it needs to be closely observed to prevent either an

excess or lack of jobs in the queue. The job scheduler mon-
itors the number of jobs in the job queue. If this number
falls below the job queue threshold, it adds jobs for the cur-
rent frame, using the latest scene state, to the job queue. The
scheduler works asynchronously to match the rate at which
jobs are added to the rate at which they are being processed
by the workers in a desktop grid to avoid under- or overflow
of the queue.

Traditionally, an image is subdivided into tiles for paral-
lel rendering such that each tile can be calculated in par-
allel [CDR02]. The image is composited when all the tiles
are rendered. For desktop grids, redundancy could be em-
ployed to ensure all the tiles are computed. This would entail
that if one of the tiles fails to come back (within a specified
time) due to a delay or fault, a duplicate copy of the same job
would be computed. However, redundancy is not ideal when
rendering towards a deadline as it can add substantially to
the rendering time needed for a frame, thus hindering per-
formance. Instead, in our approach, an image is subdivided
into group of pixels chosen quasi-randomly [KK02] over the
complete image space instead of using tiles (see Figure 2).
This enables a fair coverage of the whole image per job. If
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Figure 2: An image of the Cornell Box divided into 4 groups of quasi-randomly chosen pixels. Each of these groups can be
independently computed in parallel. In practice, the image is divided into many more groups. Please note that the resolution of
256×192 used in these images is for illustrative purposes only.

(a) Quasi-random Sampling

(b) Tile-based Sampling

Figure 3: Image subdivision techniques and the resultant image in case of faults.

a job fails to complete, image reconstruction techniques are
used to fill in the missing data, Figure 3a. It is difficult to
reconstruct an image when a tile of pixels is grouped to-
gether as a job, since there would be significant holes in
the case where task fails without redundancy as shown in
Figure 3b. The advantage of using a quasi-random sequence
over a purely random sequence is that it provides low dis-
crepancy (fills the space more uniformly). A regular sam-
pling pattern would, on the other hand lead to undesirable
structured noise in comparison to quasi-random sampling in
case of faults. By using image reconstruction algorithms, re-
dundancy can be avoided for parallel rendering while main-
taining time-constraints in a shared environment.

4.3. Display and Reconstruction

Our method is fully dynamic such that it allows the user
to change camera view, object positions, object materials,
lighting positions and lighting conditions while interacting
with the scene. This interaction sets the scene state which the
scheduler uses for queuing up the jobs. Before displaying a
frame, the master needs to wait for the results to come back
from the workers. It then reconstructs the partial frame on
the GPU as explained further in Section 4.3.1 and displays
it on the user’s screen. It is possible that the job queue con-
tains jobs for a frame which has been already displayed and
in such a case those jobs are discarded from the job queue.
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Our method uses a heuristic to guide the master to deter-
mine how long to wait for the results from the worker before
reconstructing the partial frame. There are two parameters
which form the heuristic, a quality constraint and an interac-
tion constraint.

The quality constraint Qt , at a time instant t measured
from the start of computation for the current frame, is given
by:

Qt =
number of jobs finished for the current frame

number of total jobs for the current frame

The quality constraint controls the visual quality of the re-
constructed frame. The interaction constraint It , at a time in-
stant t is given by:

It = time taken for the current frame
time taken for the last frame

The interaction constraint estimates the wait time using the
previous frame and tries to maintain smooth user interaction
even with variable computing resources. The master waits
for time t while one the following conditions are true:

Qt < Qmax ∧ It < Imin
Qt < Qmin ∧ It < Imax

where Qmin, Qmax, Imin and Imax are user-defined minimum
and maximum values for the quality and interaction con-
straints respectively. In the worst case scenario, if the master
does not receive results to meet the minimum quality con-
straint in the time specified by maximum interaction con-
straint, it skips the current frame and moves on to the next
frame. This ensures that even if most of the workers com-
puting the same frame go down, the master would be able
to adjust to this significant transient variation in the compute
power.

If the user requires a fixed frame rate, the master waits for
the specified amount of time before moving onto reconstruc-
tion. In this case, the reconstruction tackles the variability of
resources and the visual quality of the frames changes.

4.3.1. Image Reconstruction

While rendering using volatile resources, we are not guar-
anteed to get all the results back due to faults. Therefore,
we use image reconstruction techniques to fill in the missing
pixels in a partial frame. We use a discontinuity function,
Di, j which allows us to find if two pixels i and j are similar
for interpolating across them. The discontinuity function is
given by:

Di, j = max(0, n⃗i · n⃗ j−α)×max(0, |zi− z j|2−β2)

where,

n⃗i = Orientation at pixel i
α = User-defined orientation threshold
zi = Position at pixel i
β = User-defined position threshold

This discontinuity function can be used as a spatial dis-
continuity filter when i and j are different in spatial posi-
tions, while it can also be used as a temporal discontinuity
filter when i and j represent same pixel in different frames.

Firstly, a nearest neighbour reconstruction technique is
used to estimate the missing pixels. We chose this technique
over other reconstruction methods due to its simplicity and
the ability to run in real-time on a GPU. The luminance Li,
of a missing pixel i is calculated as:

Li =
∑

j∈N{i}
L j×Di, j× ki, j

∑
j∈N{i}

Di, j× ki, j

∀i ∈Ω

where,

Li = Luminance at pixel i
N{i} = Set of calculated pixels in the neighbourhood

of i
Di, j = Spatial discontinuity function
ki, j = User-defined weighting function
Ω = Set of all missing pixels

After nearest neighbour reconstruction, luminance val-
ues are accumulated and displayed if the scene state is un-
changed from the previous frame. If this is not the case, then
we apply a temporal filter to reduce flickering when user
interaction occurs. The temporal discontinuity function re-
moves the ghosting artefacts usually generated by a temporal
filter and the luminance is updated as follows:

Li =
∑

j∈T{i}
L j×Di, j×wi, j

∑
j∈T{i}

Di, j×wi, j

∀i ∈Π

where,

T{i} = Set containing previous values of pixel i
Di, j = Temporal discontinuity function
wi, j = User-defined weighting function
Π = Set of all image pixels

Finally, the spatial noise is reduced by applying a Gaus-
sian filter with spatial discontinuities while the user is inter-
acting with the scene. This filter is given by:

Li =
∑

j∈M{i}
L j×Di, j×gi, j

∑
j∈M{i}

Di, j×gi, j

∀i ∈Π

where,

gi, j =
e
−

i2 + j2

2σ2

2πσ2

σ = Standard deviation of the Gaussian function
M{i} = Set of pixels in the neighbourhood of i
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(a) Cornell Box (63k) (b) Kalabsha (861k) (c) Kiti (243k)

(d) Race Car (69k) (e) Sponza (66k)

Figure 4: The scenes used for evaluating our method. The number in brackets indicates the polygon count of the model.

This reconstruction and filtering is only done on the lu-
minance values calculated by the renderer, which does not
contain the information about the albedo (surface colour of
the material at the primary ray intersection that does not
take into account any lighting). We calculate the albedo on
the GPU and multiply it afterwards. This prevents filtering
across colour boundaries contained in the albedo such as
high frequency texture details.

4.4. The Worker

The worker is scheduled on any machine that becomes avail-
able on the desktop grid at any time. It is implemented as a
single thread such that any core on a machine can be em-
ployed, if it lies idle. The worker connects to the master ask-
ing for work and receives the job packet for a description of
the rendering job. It changes the scene state according to the
description provided in the job packet and then renders the
specified set of quasi-random pixels. It calculates the lumi-
nance of those pixels and sends them back to the master in a
result packet and waits until the master sends more work in
the next job packet.

5. Implementation Details

We have implemented the method described in the previous
section and tested it on a desktop grid. We used the TCP/IP
protocol with portable data serialisation to communicate be-
tween workers running on heterogeneous machines and the
master. We employed Condor [LLM88] for managing work-
ers on vacant resources and transferring the initial scene files

and executables to start computation on them. Our test plat-
form was a desktop grid consisting of two kinds of proces-
sors connected by a 100 Mbps Ethernet LAN. There were
48 Dual Core 2.6 GHz AMD Opteron processors with 4GB
RAM each running Linux and 8 Quad Core 3.0 GHz Intel
Extreme processors with 4GB RAM running Windows. We
treated each of the 128 cores as a separate resource to ob-
tain finer granularity in our experiments. The master ran on
a machine having 2 Dual Core 2.6 GHz AMD Opteron pro-
cessors with a shared memory of 8GB running Linux. The
machine also had an NVidia 8800 GTX GPU for reconstruct-
ing the partial frames in real-time using the OpenGL shad-
ing language. The reconstruction was done on the GPU for
optimum performance. For calculating the luminance val-
ues of the pixels on the workers we used the path tracing
algorithm [Kaj86], however, other point sampling methods
could also be employed. Each job consisted of rendering a
set of pixels chosen quasi-randomly using Sobol and van der
Corput sequences [KK02] from a 640×480 frame with four
samples computed per pixel per update. The choice of four
samples per pixel was made to achieve interactivity on our
test bed. Since it has a direct impact on the amount of com-
putation required, much more computational power would
be needed to compute higher number of samples per update
and maintain interactive frame rates. As desktop machines
gradually improve, future iterations of this system would use
more samples per pixel. Furthermore, to mask the effect of
such low sampling, the filtering was applied as described in
Section 4.3.1. Once the user stopped at a particular scene
state, such filtering was removed and samples were accumu-
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(a) Cornell Box
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(b) Kiti
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(c) Race Car
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(d) Sponza

Figure 5: The graphs depicting the variation in visual quality of an interactive sequence with different resources for four scenes.
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(a) 96 resources (b) 32 resources

(c) 64 resources (d) Variable resources

Figure 6: The frame 177 from the Race Car interactive sequence rendered on different number of resources. The inset is an
enlarged portion of the image to show the reconstruction artefacts.

lated to offer a refined view. The method allowed the user to
interactively change an object’s position, material or colour
along with a change of light position or direction or change
the environment map in a scene while viewing it from dif-
ferent positions.

The master used Qmin = 20%, Qmax = 50%, Imin = 2 and
Imax = 4 for estimating the wait time using the heuristics de-
scribed in Section 4.3. Our job queue threshold was twice
the number of jobs per frame. We chose a radius of 5 pix-
els and ki, j = 1 to give equal weights for the nearest neigh-
bour reconstruction step. For the temporal filter we used data
from the four previous frames. A weighting function wi, j,
provided a lesser contribution from older pixel values:

wi, j = 1
Fi−Fj

where, Fi represents the current frame number and Fj repre-
sents the older frames. The Gaussian filter kernel was seven
pixels wide with σ = 1 while α = 0.75 and β = 1 was used
for the discontinuity function. These values were chosen so

that the reconstruction could be performed in real-time on
the GPU.

6. Evaluation

Using the desktop grid described in Section 5, we were able
to achieve interactive rates for a variety of scenes. Even for a
complex model such as Kalabsha (see Figure 4b) with 861k
polygons, large indirectly lit areas and two light sources, the
sky and a directional light, we achieved about 3 frames per
second on our test platform. For a simpler scene such as the
Kiti model (243k polygons), we could obtain a fixed frame
rate of up to 10 frames per second.

We evaluated our implementation by comparing the vi-
sual quality of the scenes depicted in Figure 4, rendered on
different number of resources. We used the well known, Vi-
sual Difference Predictor metric (VDP) [Dal93] for compar-
ing the visual quality of different frames. The VDP provides
the percentage of pixels of an image which would be per-
ceived differently by a human observer when compared to a
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(a) Gold Standard rendered on 96 resources (b) VDP output of frame rendered on 32 resources

(c) VDP output of frame rendered on 64 resources (d) VDP output of frame rendered on variable resources

Figure 7: The VDP comparison for frame 70 from the Kiti interactive sequence. In the VDP output images, the grey pixels
depict no perceivable difference. The green pixels are used to represent low probability of noticeable difference, while the red
pixels are used for depicting high probability.

Scene Frames per Second
Cornell Box 6.66

Kiti 6.00
Race Car 5.00
Sponza 2.50

Table 1: The table depicting the fixed frame rate used for
various scenes.

high quality gold standard. We present three kinds of visual
comparisons in the following subsections, one while inter-
actively rendering the scene at a fixed frame rate, second
by rendering a static image with accumulation and the third
comparing reconstruction quality for two hundred frames.
For these comparisons, we employed 96 identical proces-
sors from the desktop grid to eliminate heterogeneity as a
variable.

6.1. Interactive Sequence

In the first case, we rendered the same interactive sequence
using different resources at a fixed frame rate (see Table 1).
The graphs in Figure 5 compare the VDP metric with a prob-
ability of detection greater than 75% for these sequences.
We use the sequence rendered using 96 resources as the
gold standard. These graphs show that, not surprisingly, with
lower number of resources we get less result packets in the
imposed time-constraint which means greater reliance on re-
construction to fill in the missing information as shown in the
Figure 6. This deteriorates the image quality as expected and
is confirmed by the VDP results (see Figure 7). For a pre-
dominantly indirectly lit scene such as Sponza, the VDP val-
ues are especially high. This is the result of the randomness
introduced by path tracing only four samples per pixel for
each update. As an indicator of the randomness, we provide
a data series in Figure 5 comparing two sets of sequences
both rendered with 96 resources, to serve as a reference. In
addition to using fixed number of resources, we also present
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Figure 8: The graphs depicting the visual quality convergence of a static image with different resources for five scenes.



Aggarwal et al. / High-fidelity Interactive Rendering on Desktop Grids

0
10
20
30
40
50
60
70
80
90

100

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191

V
D

P
 (
P

>
7

5
%

)

Frames

Spatial

Spatio-temporal

No Reconstruction

(a) Cornell Box

50
55
60
65
70
75
80
85
90
95

100

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191

V
D

P
 (
P

>
7

5
%

)

Frames

Spatial

Spatio-temporal

No Reconstruction

(b) Kalabsha

0

10

20

30

40

50

60

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191

V
D

P
 (
P

>
7

5
%

)

Frames

Spatial

Spatio-temporal

No Reconstruction

(c) Kiti

0

10

20

30

40

50

60

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191

V
D

P
 (
P

>
7

5
%

)

Frames

Spatial

Spatio-temporal

No Reconstruction

(d) Race Car

60

65

70

75

80

85

90

95

100

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191

V
D

P
 (
P

>
7

5
%

)

Frames

Spatial

Spatio-temporal

No Reconstruction

(e) Sponza

Figure 9: The graphs comparing visual quality of reconstruction methods for interactive sequences.
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Figure 10: The graph showing efficiency of our method for rendering on different number of resources.

a data series for variable resources in Figure 5 where the
number of resources varies per frame of the sequence. The
resources, R at frame i are given by:

Ri = 96−24sin( 2πi
100 )

The variation of the resources was chosen to be sinusoidal
to illustrate our algorithm’s ability to compute at fixed frame
rate with any number of resources. The system can handle
sharp variations of resources as explained in Section 4.3 by
skipping a frame in the worst case scenario.

6.2. Static Image

In the second case, we rendered a single static image using
different number of resources. The graphs in Figure 8 com-
pare the VDP values showing how the images converge with
time. We use the converged image after 200 frames as the
gold standard for evaluating the VDP metric. Even in the
best case scenario (Figure 8c), it takes about a second for
the VDP to fall below the 3% threshold where the two im-
ages are assumed to be the same. The variable resources data
series uses the same function as before.

We calculated the efficiency of our method by comparing
the time it took for rendering these images with the time it
took to render using a single processor, see Figure 10. We
found that the efficiency of the master did not decrease with
an increase in number of workers on our test bed. The mas-
ter running on a quad-core machine was not a bottleneck
and with the use of non-blocking synchronisation, it scaled
almost linearly on our test bed. The major bottleneck of the
system was the rendering process. When we synthetically
reduced the rendering cost to zero, we obtained about 55-60
fps, which is an upper bound on the frame rate due to the
available network bandwidth. When the master starts lag-
ging due to too many workers, an approach similar to a hi-
erarchy of masters can be used where the user would need
exclusive access to more than one machine for running the
masters. Also the load on the master can be reduced by de-
creasing the frequency with which the workers send requests
to the master. This can be achieved by increasing the work
load of the workers by calculating more samples per pixel in
such a case.

6.3. Frame Reconstruction

Finally, we compare the visual quality of our reconstruction
for interactive scenes. The graphs in Figure 9 show the ad-
vantage of using spatio-temporal reconstruction in contrast
to spatial reconstruction only (as used for static images in
[ADD∗09]). The VDP plot for spatial reconstruction is sim-
ilar to the spatio-temporal reconstruction while the image ac-
cumulates. However, during the transition period while the
user is interacting with the scene, the VDP for spatial re-
construction is considerably higher than the spatio-temporal
reconstruction. During this period, the path tracing noise is
especially high due to the low number of samples for each of
the frames. Therefore to reduce this temporal noise, it is ben-
eficial to use previous samples taking into account disconti-
nuities for improving the visual quality of the frames. For
these comparisons we used frames with no missing pixels
as the gold standard. Furthermore, we plot a data series for
each scene by comparing two sequences with no reconstruc-
tion to indicate the path tracing noise as before. The VDP
plot of spatio-temporal reconstruction closely follows that of
no reconstruction, indicating that our reconstruction method
has a minimal impact on the visual quality while employ-
ing the quality constraints specified in the Section 5. On the
other hand, if a fixed frame rate is specified instead of using
quality constraints, reconstruction artefacts are visible when
lower number of resources are used as shown in Figure 6. In
such a case, to prevent deterioration of visual quality due to
reconstruction artefacts beyond acceptable limits, either the
fixed frame rate must be lowered or more resources must be
employed.

7. Conclusions and Future Work

We have presented a novel fault-tolerant interactive render-
ing algorithm. This algorithm allows the users to achieve
high-fidelity interactive rendering at a low cost using volatile
computing resources such as a desktop grid. Desktop grids
have been generally used for high-throughput computing,
but using our method, we have demonstrated their potential
for performing interactive visualisations. The heuristics em-
ployed by our method allowed successful monitoring of the
variability in computational power to provide a smooth user
interaction. Although our implementation used path tracing
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for calculating the luminance, other point-sampling based
rendering algorithms can be similarly adapted for interactive
visualisations.

Our experiments indicate that the rendering still remains
the major bottleneck in our system and any advances which
would make it faster would potentially improve the per-
formance of our system. Recently GPU-based ray tracing
engines have emerged, which provide significant speed-up
over CPU-based ones. We believe that in future, when the
hardware for running such ray tracing engines becomes
widespread, our method will naturally be able to exploit this
hardware on idle machines to provide higher quality interac-
tive rendering on desktop grids.

We have found that the current frameworks for computing
on desktop grids are geared towards high-throughput com-
puting and it takes a few minutes for them to transfer the
files and start the job on idle machines. Future work will in-
vestigate ways for quick start of computations on desktop
grids so that any ramp-up time can be minimised. Also, re-
search needs to done to find a better way of synchronising
scene state on the workers, so that it does not need to be
communicated with each job packet.
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