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Abstract

Sheet metal stamping is widely used for high-volume production. Despite
the wide adoption, it can lead to defects in the manufactured com-
ponents, making their quality unacceptable. Because of the variety of
defects that can occur on the final product, human inspectors are fre-
quently employed to detect them. However, they can be unreliable and
costly, particularly at speeds that match the stamping rate. In this paper,
we propose an automatic inspection framework for the stamping pro-
cess that is based on computer vision and deep learning techniques. The
low cost, remote sensing capability and simple implementation mean
that it can be easily deployed in an industrial setting. A particular
focus of this research is to account for the harsh lighting conditions
and the highly reflective nature of products found in manufacturing
environments that affect optical sensing techniques by making it diffi-
cult to capture the details of a scene. High dynamic range images can
capture details of an environment in harsh lighting conditions, and in
the context of this work, can capture highly reflective metals found in
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sheet metal stamping manufacturing. Building on this imaging tech-
nique, we propose a framework including a deep learning model to
detect defects in sheet metal stamping parts. To test the framework,
sheet metal 'Nakajima’ samples were pressed with an industrial stamp-
ing press. Then optimally exposed, sequence of exposures, tone-mapped
and high dynamic range images of the samples were used to train con-
volutional neural network based detectors. Analysis of the resulting
models showed that high dynamic range image-based models achieved
substantially higher accuracy and minimal false-positive predictions.

Keywords: HDR imaging, deep learning, sheet metal stamping, object
detection, industrial inspection, defect detection

1 Introduction

Sheet metal forming processes are used primarily for high-volume products
produced for a range of sectors, from white goods manufacturing to the auto-
motive and aerospace sectors [1]. The stamping process is particularly suited
for high-volume mass production (typically tens of parts per minute). As a
result, despite the high investment costs of tooling (of the order of £250k per
toolset), the per piece price is relatively low (compared to other processes such
as casting or machining) because production costs are amortised over large vol-
umes [2]. Furthermore, it allows the formation of complex shapes. Despite the
advantages, the process can result in defects in the manufactured components
making their quality unacceptable.

A variety of defects can occur due to the stamping process, with different
shapes, sizes or positions, as listed in the literature [3]. The most critical defect
in a stamped part is the ’split’ [2]. Splits are caused when the plastic defor-
mation that is accumulated in the material during its manufacturing exceeds
its forming limits, resulting in a through-thickness fracture of the component.
A split component is functionally and aesthetically unusable and is therefore
scrapped. These defects are commonly seen in high-strength materials such as
ultra-high-strength steels (with the ultimate tensile strength of 1000MPa) and
lightweight materials such as aluminium. They have lower forming limits but
are critical for automotive and aerospace components because they allow the
manufacture of lightweight components that reduce transport emissions.

The most effective current technique used for detecting defects in stamped
parts is by human visual inspection [4]. This method of inspection is costly,
time consuming, and most importantly, prone to human errors. The impact
of not detecting a defect (a false negative) is that it will proceed along the
manufacturing process and will likely be assembled into a sub-assembly or the
final product. Scrapping a product later in the production process incurs a
greater cost and reputational damage if it is delivered to a customer. Therefore,
a reliable and robust automatic defect detection method is necessary after the
metal stamping process.
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Several sensor-based techniques have previously been implemented for a
similar task, however, sensor-based systems are unreliable and only 46% of
the sensor systems placed in industries are completely functional [5]. This is
because most of the sensors rely on touch, and in industrial environments
touch-type sensors are prone to breaking down. However, vision-based sensors
have the advantage that they do not rely on touch and utilise relatively cheap
hardware.

Previously, manual techniques were implemented for feature extraction and
defect detection in computer vision (CV) inspection. The manual design of the
feature extractor required huge efforts for every defect type and sample shape.
However, developments in deep learning (DL) especially the introduction of
convolutional neural networks (CNN) have the potential to shift the paradigm
from manual inspection to machine learning based object detection [6]. State-
of-the-art CNN based object detectors such as YOLO [7] and Faster RCNN [§]
are able to achieve >80% accuracy on a challenging large dataset (Pascal Visual
Object Challenge (PASCAL VOCQ)) [9], while running at real-time speeds of
up to 140 fps [8, 10].

In spite of the accuracy of CNN models, they have not been widely adopted
by industries for sheet metal inspection. A major issue with these models is
that they are unable to detect objects in extreme lighting conditions.

This work proposes a framework for automated defect detection on pro-
duction lines which is designed to be robust to a wide range of illumination
conditions while providing high accuracy and a low false-positive rate. We
achieve this by leveraging an imaging technique known as High Dynamic Range
(HDR) to capture details that conventional optical capture systems miss, then
train a deep learning system to both detect and localise defects.

While HDR imaging is able to capture real-world lighting values, there are
multiple ways to use this lighting information in a deep learning system. We
explore these options and provide a recommendation that is able to achieve
an increase of 7.2% over conventional LDR imaging. Specifically, although
our approach could be trained to detect any type of defect, we evaluated the
proposed framework using manufactured “Nakajima” samples containing the
neck and split defects.

To summarize, the main contributions of this work are:

A mathematical formulation was developed to identify components difficult
to detect in sheet metal stamping parts.

e A framework for automated defect detection and localization for stamped
metal parts which is robust to a wide range of illumination conditions.

A deep learning based approach leads to high accuracy while minimizing
the false positive rate.

® A comparison of multiple approaches using HDR imaging for defect detec-
tion.

The remainder of the article is organised as follows. Section 2 presents
relevant backgrounds and literature on various associated topics. Section 3
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presents a theoretical motivation for HDR imaging to demonstrate the require-
ment of HDR and find the component difficult to detect using traditional LDR
methods. Section 4 proposed a framework. Whereas the Experiments to vali-
date the proposed framework were presented in Section 5. Section 6 presents
the experimental results and Discussion. Finally, the Conclusion is presented
in section 7

2 Background and Related Work

This article includes various topics such as sheet metal stamping, HDR tech-
nology, and DL. Therefore, in this section, we are focused on providing a brief
overview of various topics relevant to the study.

2.1 Sheet Metal Stamping

Stamping is a sheet metal manufacturing process, where a moving punch plas-
tically deforms a flat sheet against a stationary die to its final shape. This
deformation should be done without the sheet splitting.

Siekirk [11] identified more than 25 variables influencing the stamping pro-
cess such as component geometry, material properties and process variables
(friction, lubrication etc.). Despite a good process design and optimisation,
the quality of stamped components (eg. the level of springback, the occurrence
of splits) will vary, due to variation of materials’ properties between batches
[12] and the wear and tear of the tooling. Majeske and Hammett [13] studied
stamping data from automobile manufacturers and found that within the same
batch the part-to-part geometric variation could be as high as 30%. Similarly,
Cao et al. [14] pointed out that there are variations in input variables within
a batch, i.e. Variation in material strength can be as high as 20%, the strain
hardening coefficient 16% and the friction coefficient 65% in sheet metals. The
large number of parameters that can vary and interact with one another in
a stamping process can make the process variable. Few of these parameters
can be directly controlled by an operator, making the process susceptible to
unexpected failures.

2.2 Deep Learning for Sheet Metal Stamping Defects
Detection

The introduction of CNN and ensuing improvements have led to better accu-
racy and speed of detection in object detection tasks, which leads to an increase
in the study of CNN based models in industrial inspections tasks [15-18]. Yang
et al. [18] implemented a pre-trained CNN model to detect defects in safety
vents for the power battery and achieved up to 99.56% accuracy at a 0.33%
false positive (FP) rate. Further model performance was evaluated on a Rasp-
berry Pi to indicate the framework can be implemented in a industrial setup.
Cha et al. [15] proposed a CNN-based approach to detect cracks in concrete
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surfaces, and they compared the deep CNN (DCNN) method with two well-
known traditional edge detection methods (i.e. Canny and Sobel) and found
that the CNN based method was consistent in different lighting conditions
compared to traditional techniques. The same team successfully designed and
implemented a Faster Region-based CNN (Faster RCNN) for real-time detec-
tion of defects, including five defects: cracks in concrete, delamination of steel
reinforcement, corrosion in medium and high steel and in bolts [19]. In order to
implement CNN models for real-time task a You Only Look Once (YOLO) net-
work was proposed by combining classification and regression task to a single
end to end network [7]. Li et al. [20] improved YOLO by making it all con-
volutional layers, achieving a 99% detection of scratch and inscription defects
in flat rolled steel surfaces at a speed of 83 FPS. Due to the end-to-end and
real-time performance of the YOLO network, several researchers implemented
YOLO-based models for industrial defect detection in the literature [21-23].
For example, Zhuxi et al. [21] integrated a depthwise separable convolution
and parallel dual channel attention module on yolov4 to reduce the model scale
and enhance the feature maps. As a result, the model results in 96.28% mAP
compared to 90.47% with Yolov4 on aluminium strip surface defects. With a
similar aim to reduce the model size for industrial defect detection, Zhang et
al. [22] proposed a CR-YOLO network by integrating combined channel and
special attention module (CBAM) to yolov4 [24]. The study also implemented
the model and a segmentation model to detect defects on an edge device for
real-time application. Yao et al. [23] introduced an overlapping pooling spa-
tial attention module and a dilated convolutional module where the former
module improved accuracy and reduced over-fitting, and the latter module
expands the receptive field, resulting in better performance on large objects.
The results showed 8.87% and 2.38% improvement in AP for the two modules
respectively on area defects of light guided plates.

Following the introduction of the transformer neural network, an architec-
ture for sequence-to-sequence tasks, many researchers tried to integrate the
transformer network into CV tasks. One initial study divided the images into
16X16 patches and used them as a sequence of vectors as input to the trans-
former network. The method outperformed state-of-the-art networks on image
classification tasks [25]. Improving on the work, Liu et al. [26] introduced a
cross-connection between non-overlapping patches, achieving state-of-the-art
object detection on the msCOCO dataset. Gao et al. [27] implemented a varia-
tion of the Swin transformer called “Cas-VSwin transformer” for surface defect
detection. Results showed the proposed method surpassed Swin transformer
and other CNN-based state-of-the-art models on SeverstalSteel [28] and NEU-
DET [29] datasets. However, the transformer-based models require more data
than CNN-based models. This is due to transformer-based models need to
learn connection between vectors in contrast, a CNN-based model provides a
well-defined connection between vectors. In the sheet metal stamping prob-
lem, gathering a large dataset is expensive, therefore CNN is a better choice
for stamping defect detection.
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In the context of industrial surface defect detection, Bozi¢ et al. [30] exper-
imented on various open source datasets containing images of defects such
as DAGM [31], KolektorSDD [32], and the Severstal steel defect dataset [28].
However, the images in these datasets were either artificially created or not
accounting extreme lighting, moreover these datasets does not represent the
the extreme lighting conditions present in stamping shops, which make object
classification difficult. However, the study focuses on tackling the scarcity of
annotated data by comparing weekly supervised, fully supervised and mixed
models which leads to good results for samples captured in carefully controlled
lighting conditions. Similarly, Shen et al. [4] proposed a CNN model based
on a MobileNet architecture to detect surface defects on flat galvanised steel
sheet and achieved up to 98.81% accuracy with 97 FPS. Several CNN-based
studies on industrial defect detection are listed in the literature [4, 21, 23].
However, these dealt with defects in flat sheet materials, which have different
types of defects and simpler geometry than stamped components most impor-
tantly not include reflective samples. To the best of our knowledge, the only
study used CNN models to detect defects in stamping products is presented in
literature by Block et al. [17]. The work used images containing 8845 imprint
defects to train a CNN model based on RetinaNet architecture and tested on
8584 imprint defects. The study achieved a precision and recall of 90% and
92% respectively on the test dataset, which was an important development
because it demonstrated the ability of the technique to detect small defects
like imprint defects (with average size between 0.7 to 5mm diameter).

A significant aspect of these studies is that they were carried out on flat
or non-reflective samples. As a result, the images used for training the CNN
models and validating the models were not representative of the conditions
encountered in an actual sheet metal stamping manufacturing environment. In
more realistic conditions, lighting from overhead electric lights, sunlight from
windows and factory skylights interact with the shiny metallic surface to cre-
ate unpredictable specular reflections. In concave geometries, these reflections
can be multiplied because of their internal reflections. Therefore the imple-
mentation of advanced imaging technique that is robust to the environment
required to be explored.

2.3 HDR Technology

The dynamic range of an image is the difference between the luminance of the
brightest and darkest part of an image, where the difference is measured in a
logarithmic scale of base 10 (cd/m2). Most camera systems capture 8 bit LDR
images which are limited in the range of quantised values they can represent.
This is a limitation when capturing real-world lighting values which typically
exhibit a significantly higher dynamic range of values. HDR capture and repre-
sentation [33] mitigate this issue by increasing the bit depth available to store
image values, frequently by using 16/32 bit floating-point values. Contrary
to LDR, HDR images can simultaneously represent details in both dark and
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extremely bright regions of an image without losing information. This comes
at the cost of increased memory requirements to store HDR images.

2.3.1 Tone-mapping

As HDR images are stored at a higher bit depth, they are not immediately
compatible with conventional display technologies or image processing meth-
ods. Therefore, methods of mapping HDR images to conventional LDR display
and processing pipelines are required, these are known as tone mapping oper-
ators (TMO). The goal of TMOs is to make minimal changes to the image
while reducing the luminance from HDR to LDR, ideally preserving contrast
and image details as much as possible. Typically chroma is simply quantised
to 8 bits and combined with the resulting luma. A range of TMOs have been
developed [33] but the best choice of TMO is frequently application specific.

2.3.2 HDR based object detection

Although a significant amount of literature exists for the technology behind
HDR imaging, HDR-based object detection is rarely discussed. Rana et al.
[34] studied HDR image based feature extraction using manual CV techniques
and their experiments showed enhanced feature modalities compared to LDR
images under different lighting conditions. To the best of our knowledge, with
the exception of [35], no studies have been made of CNN using HDR images for
object detection. Mukherjee et al. [35] used a 'pseudo’-HDR image dataset for
the training of the CNN based models, which was created by using an expan-
sion operator which expanded the dynamic range of LDR images. Although
the model shows lower accuracy on ’pseudo’-HDR test images compared to
LDR based model, a separate native HDR dataset under the extreme light-
ing conditions adopted from a database shows an 11% improvement in mean
average precision (mAP) compared to its low dynamic counterpart.

3 Theoretical Motivation for using HDR
Imaging

The automotive-grade sheet metal component has a specular appearance
because their low surface roughness leads to shiny surfaces. At the same time,
industries like sheet metal stamping have harsh lighting conditions depending
on the power supply and weather conditions (stamping shops allow sunlight
using skylights). The above reasons make capturing details in a sheet metal
stamping part for defect detection difficult. Therefore, mathematical formu-
lations are developed in the following subsections to identify the components
where the object details are not captured and lead to CV-based models to
struggle. We computed entropy on 120 stamping parts for the study at nine
different exposure images introduced in detail later in Section 5.
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Fig. 1 Plots showing the entropy of images at a range of exposure times. These show
entropy calculated on (a) the whole object (with the background removed), (b) regions of
the image corresponding to defects in bright regions of the image (green) and darker regions
(blue), and (c) the mean of the whole object and both defect groups.

In the field of information theory, Shannon Entropy (H(X)) is used to
represent the amount of information in a random variable X:

H(X) == p(x)logs(p(x)), (1)

zeX

where p(x) is the probability of a value x occurring. This can be applied
to images where X is the set of intensity values, and p(x) is the probability
associated with the intensity value x. We computed the entropies for the whole
image and areas of the image containing defects. Line plots of the entropy at
different image exposure times are shown in Fig. 1. Fig. 1 (a) shows the entropy
computed for the whole object (with the background removed to ensure the
entropy is computed only for the part), Fig. 1 (b) shows the entropy for areas
of the image containing defects in darker to well exposed regions (blue) and
brighter regions (green). Fig. 1 (c) shows the mean of the whole image and the
defect regions.

The study shows that captured information in an image depends on the
intensity of the scene and exposure of the captured image. Similarly, depend-
ing on the intensity of light in the specific area of the scene, the captured
information can vary. This analysis shows that a single exposure LDR image
cannot adequately acquire the details in all image regions, even if captured at
optimal exposure. Given that the location of defects is not known prior to cap-
ture and that defects may be present in both bright and dark regions of the
image, an acquisition system need to capture all these details. This motivates
the use of HDR imaging to capture images of defects on parts.

4 Proposed Framework

Based on the motivation (see section 1 and 2) a reliable early detection of defec-
tive components is essential for most manufacturing processes. The inspection
of defective parts has to balance defect detection when present, yet minimise
the number of defect-free parts flagged as containing defects, known as false
positives. Minimising false positives is also essential from a financial and time
perspective; if too many parts are incorrectly classified then this too many
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Fig. 2 A high-level overview of HDR based CNN model implementation to detect defects
in sheet metal stamping assembly line. The upper part of the image (above the dash-dot
line) shows the training of the HDR based CNN model and the bottom part shows the
implementation of the model in the production line. In the figure, (i) HDR image capture,
(ii) Identify Defects, and (iii) Decision making: Finally, using the information of defects in
a sample, the decision can be made to accept/reject or rework a sample.

lead to financial losses and interruptions to the assembly line. Therefore, auto-
mated approaches to defect detection must consider both these criteria. In this
section we propose a framework whereby components on a stamping line are
first imaged with HDR cameras, then these images are passed through a trained
deep neural network which both identifies and localises defects if present. The
use of HDR imaging enables details that are lost in LDR images to be passed
to the neural network, which enables the network to reliably detect the defects.
Our framework (see Fig. 2) consists of two broad steps. In the first step,
a training step, HDR images of defective and good parts are captured. These
images are used to train a CNN model. The second step is an online process
that is used directly on the assembly line. It involves a number of stages:

e HDR image capture: The stamping parts move to assembly points through
conveyors. In mass production, to stop the defective parts from reaching an
assembly point, the defects need to be identified directly on the conveyors.
The framework proposes capturing HDR. images of the parts directly from
a gantry over the conveyors.

® Identifying defects: In this step, the HDR images are preprocessed as
required by the model. Then the model will detect the defects.

® Decision on the defective part: Finally, in this stage depending on the size,
position and type of defects a decision can be made to accept/ reject or to
send for repair.

An overview of our framework is shown in Fig. 2, and each of these steps
is discussed in more detail below.

4.1 HDR image capture

The first stage of both the training and online process is to capture HDR
images. There are two common methods to achieve this: either using native
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Fig. 3 An example of nine exposure images extracted from a single HDR image. The
exposure time was reduced in reading order. Row 1 images are the higher exposure images
where details at less bright regions are captured. Row 3 are lower exposure images where the
defect details in the brightest spots are captured with a cost of losing details in less bright
regions.

HDR cameras or using bracketing techniques. Native HDR cameras are capable
of capturing scene details with high dynamic range in a single shot. How-
ever, these native HDR cameras are not widely available compared to general
purpose cameras. The bracketing technique uses general purpose cameras to
capture a series of images of the scene at different exposures [33]. These dif-
ferent exposures are typically achieved by changing the exposure time while
keeping the ISO and aperture constant. The various exposure times allow the
camera sensor to collect a different number of photons each time per pixel.
This results in a range of images being captured including under and over
exposed images. This set of images are then merged to create an HDR image
of the scene. Various merging algorithms have been proposed to merge the
images [33], among all the most common is the Debevec merging algorithm
[36]. Regardless of the method of capture, the output from this stage results
in an HDR image, Iypr, of the part.

This is able to represent the details of a part regardless of the scene
illumination and is capable of storing details of defects even in very bright
illumination conditions. Fig. 3 illustrates this with a capture of a real part
with a defect which happens to fall in a bright reflection. This image shows
nine exposures extracted from a single HDR image, where details in the darker
regions are visible on the top row of higher exposures, but the defect is clearly
visible on the bottom row of lower exposures. The HDR image encodes all this
information.

4.2 CNN Model

A neural network object detector is also required for both training and online
detection. This requires a choice of the network model. The state-of-the-art
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object detection models can be classified into two categories: a) two stage or
region proposal networks (RPN) based algorithms, and b) single stage detec-
tors. The RPN-based models first generate region proposals followed by object
detection. Whereas, the single stage detectors are based on global classifica-
tion and regression which can predict class probability scores and bounding
box locations directly from the input images using a single feed forward CNN
model. Since the model is a single feed forward network the model design is
relatively straightforward and can train and optimise end-to-end. State-of-the-
art models in this category include YOLO, which is capable of detecting in
real-time [7]. Although the framework can be implemented on both types of
models in this study a single stage detector is implemented.

After the creation of datasets, the images were processed through a CNN
network for training and testing. Normally a CNN network takes an image
I € RwX"*¢ a5 input and predicts the object classes and locations with a
confidence value. Commonly, CNN models are designed and trained on LDR
images with a single image as an input. For this framework, we can use any
backbone of choice but add custom inputs to the second layer while leaving
the rest of the network fixed. We represent the fixed part of the backbone
as Yenn,2: Which is connected to a representation dependent input through a
function f(-) as defined below. Therefore, the prediction from the image can
be written as:

V= ycnn,?:(f(j)) (2)

where the function f : RW*"*¢ 5 RF maps the input image or set of images I
through a differentiable transform to the tensor encoding of the second layer
of the network which is of size F. This is required to work with different
representations of HDR images as discussed in Section 5.3.

4.3 Adapting HDR images as CNN inputs

While we propose the use of HDR images as inputs to a CNN detector, this is
not straightforward, as CNNs are usually designed for use with LDR images.
There can be difficulties in directly using HDR content, for example if leverag-
ing pre-trained networks that require inputs in the range [0..1] (HDR images
are unbounded Igpr € RT), that were trained using LDR image statistics.
Even if training from scratch, HDR image statistics can be hard to normalise,
as is usually done for CNN inputs. Therefore, the function f(-), defined above,
must also implement a mapping which encodes the HDR image in the range
[0..1] and appropriately adapts the image statistics. We, therefore, propose, as
a final part of our framework, three methods for adapting HDR images to be
used as inputs to CNNs. We analyse their performance in the next section.

The first approach is to extract one or more exposures from the HDR image
similar to Fig. 3. If one exposure is used, then the optimal exposure can be
chosen which is equivalent to capture one single exposure image at optimal
exposure.
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wxh
Iy = Ifipg, where e = argmaxz 1(t < IHDR(i)é < ty) (3)
¢ i
where the indicator function 1 returns 1 if a pixel value is between a lower {;
and upper threshold ¢, and 0 otherwise.

Multiple exposures are simply extracted from computing the optimal expo-
sure, then taking fixed offsets. These can then be concatenated when input to
the network.

A second approach is to map the HDR values to LDR values through a
process known as tone mapping. A Tone Mapping Operator (TMO) takes
Inpr as input and returns a tone-mapped image which is in the range [0..1]
while preserving as many details as possible. Usually, the TMOs only reduce
the luminance range, while colours are unprocessed.

Li= fi(Ly): R**" = [0..1]

TMO(I) =< [Ry R,]\°’ (4)
Gi| =La| & [Gu
Bd Bw

where s € [0,1] is a saturation factor that decreases saturation. After the
application of tone mapping operator TMO(-), gamma correction is usually
applied to each colour channel, followed by clamping to [0..1]. Many TMOs
exist, each designed for different image types. We discuss this more in Section
5.3.

The final method, directly normalises the HDR image by dividing by the
maximum value: % This does preserve all details, but if the HDR

image contains outliers then the majority of the image may contain extremely
small values which can cause difficulties when training [33].

5 Experiments

In this section, we describe a comparison study conducted to evaluate the
performance of the proposed framework. This includes (i) sample preparation:
describes the manufacturing of the defective and good samples, (ii) datasets
creation: describes the image capture and object annotation for creation of
different image datasets, and (iii) implementation details.

5.1 Sample Preparation

This study used the Nakajima samples that are used in standard forming limit
curve (FLC) tests (see Fig. 3) as outlined in [37]. In order to manufacture the
samples first, raw sheet materials were cut to the correct shape and size using
a Datron CNC milling machine. As this work is interested in the defects, this
method did not follow the exact sets required for an FLC evaluation. Instead,
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hemispherical samples of different sizes were randomly generated. Then using
an Interlaken 225 press, samples were pressed to their final shape. In order
to generate neck or split defects, the samples were deformed until load drops
associated with the formation of necks or splits were detected. The main aim
of this work was to generate neck or splits, but the samples also included
other defects like wrinkles, edge cracks and scratches that were formed as an
inevitable part of the tests. In addition, scratches were also formed during the
handling of samples. In contrast, non-defective parts were produced by press-
ing samples to a punch height prior to necking or splitting. This punch height
was determined through trial and error. The study produced 120 samples con-
taining 104 splits and 40 necks divided into five-fold cross-validation sets. An
additional 30 samples without necks or splits were used as safe samples only
during the model validation. These samples also contain other defect types.

5.2 Datasets Creation

The proposed framework was evaluated by comparing the CNN models trained
on five different datasets to test the HDR mappings as discussed in Section
4.1. Specifically, we generated and tested a single optimal exposure image,
a set of images at lower exposures designed to capture details in brighter
regions (offsets of —3 and —5 from the optimal value), two commonly used
tone mapping operators: the Reinhard local operator [38] (ReinhardTMO) and
the Ward histogram adjustment operator [39] (WardHistAdjTMO), and the
use of normalised HDR images.
Images for this experiment were captured with the following setup:

5.2.1 Equipment

In this study, the images were captured in a dedicated image capture room,
with no external light intervention. To illuminate the scene a 2,000W lamp
was used and the camera adopted to capture a sequence of nine exposures was
Canon EOS 5D Mark III in jpeg format.

5.2.2 Procedure

The HDR image’s purpose is to capture the scene’s full dynamic range. There-
fore, in the bracketing technique, the highest and lowest exposure should
capture the details in the darkest and brightest spots in the scene. Further-
more, the noise in the final image after merging reduces with the number of
in-between exposures since the merging algorithm compensates for the missing
information. Therefore it is a common practice to capture images every twice
exposure covering the dynamic range to create an HDR image. From Fig. 1, it
can be seen that the peak of the information for splits varies between exposure
time 1/15 to 1/4000 at constant ISO and aperture. Therefore in our study,
we captured a sequence of images at every exposure time twice from 1/4000
seconds to 1/15 seconds, when keeping the ISO and aperture constant.
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5.2.3 Image processing

The captured nine different exposure images were merged together using
Debevec merging algorithm from OpenCV 4.4.0 to create HDR images. Then
the tone-mapped LDR images were created using ReinhardTMO and Ward-
HistAdjTMO from MATLAB HDR toolbox [33], we will discus this more in
section 5.3. Finally, the resulting images cropped to 3100 x 3100 then resized
to 1024 x 1024 pixels.

5.2.4 Image Annotation

The neck and split defects were annotated as a single class since they have
similar characteristics. The annotation was created manually using a graphical
image annotation tool Labellmg [40]. “Each sample was carefully observed
for any physical defects as a reference then the optimal-exposure image was
opened in the Labellmg tool and annotation boxes were created surrounding
the area of the visible defects.” Further, the other exposures and tone-mapped
images of the same sample were opened one by one and the annotation boxes
were refined.

5.3 Implementation Details

This study used yolov5: v3.1 as backbone ycnn,2:, see section 4.2. The latest
version of the YOLO series is a state of the art CNN architecture for image
classification and object detection [10]. We describe the mapping functions f(-)
related to the representations of HDR images introduced in section 4.2 below.
To define the mapping functions from the image to the backbone, we first
define some common transformations. In YOLOvV5 F' (see section 4.2) is of
size (64 X w/2 x h/2) and all our functions eventually map to this dimension.
Normally in backbones, a higher kernel size with a stride greater than one or
a pooling layer is used at the first layer to reduce the resolution by increasing
the depth. The same task is accomplished by a SpaceToDepth stem layer (i.e.
focus layer in yolovb) yfocus introduced by [41] at a low computational cost.
The Focus layer rearranges the block of spatial data to depth, which reduces
the resolution. Therefore using a smaller kernel, can effectively convolve on a
higher number of pixels. The Focus layer converts images dimension (c,w, h)
to (4 x ¢,w/2,h/2), where and c is the number of channels of the input.
Therefore the function for optimal-exposure images is

IeEe(lo) = conv3 (yfocus (2{,)05)) , (5)

where conv3 : R12Xw/2xh/2 | R32Xw/2xN/2 i5 5 convolution kernel which maps

the result of yrocus to a tensor with higher depth, thereby learning low level
features of the image before input to the network.
The function for 3-images is:
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fae({Io, I-3,1_5}) = conv3g (yfocus <Cat({loéég3’l_5})> ) (6)

where Isp = cat(ly,I_5,1_5) concatenates three single exposure images
channel wise and conv3g : R39*w/2xn/2 y RO4xw/2XR/2 maps from the con-
catenated images to the second layer of the backbone. This number of features
is equal to the size of the second layer of YOLO, i.e. equal to F' and is designed
to fuse information from the three single exposure images.

The functions for tone-mapping images use the Reinhard and Ward oper-
ators. The ReinhardTMO is based on photographic principles which simulate
burn and dodge effects. The operator is be defined as
Ly(x) (L4 Lyt o Lin(x))

white

1+L,,, . (x) (™)
where L, (x) is original luminance at pixel index x scaled by aL;}H and a is the
chosen exposure can be automatically estimated [42]. L,, g is the logarithmic
average of the luminance. L pite is the smallest luminance value mapped to
white, i.e. equal to Ly maz by defult. If Lynite < L maqe, values greater than
Lyhite are clamped. Finally L, (x) is the average luminance computed over
the largest neighbourhood (¢,,,4,) around the image pixel. In our context, we
define this operator as TMOgr(Iupr), and is used as follows:

fr(Inpr) = conv3 (yfocus (TJV[OQR;;HDR))> (8)

The Ward histogram operator operates on the histogram of HDR values.
This first truncates the histogram H (x) without changing the total number of
samples T', then based on the cumulative frequency a histogram equalisation
formula is implemented to compute the LDR luminance:

La(x) =

Ly(z) = exp (ln(Ld,mm) + P(In L, (x))ln(Ld,maz/Ldymm)) (9)

where Lp min and Lp mas respectively minimum and maximum luminance of
tone-mapped image. P is the cumulative histogram. During the histogram
adjustment higher contrast is reduced by using a linear ceiling on the contrast,
produced by TMO (i.e. the contrast in any given region should not exceed
contrast produced by the TMO).

de (X) < Ld(x)
AL, (x) = Ly(x)’
The iterative process to truncate the histogram continues until it satisfies
this condition, derived by taking derivative of eq. 5.3 and followed by applying
the linear ceiling (eq. 10).

(10)

TA
H(x) < i

. 11
o ln(Ld,maz/Ld,min) ( )
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Similar to Reinhard, we apply this to the network using TM Ow (Iupr) to
represent the WardHist TMO.

TMOw (I
fW(IHDR) = conv3 <yfocus <;/5E—)}mR)>> (12)
Finally for HDR images, the following mapping function is used:
fHDR(IHDR) = conv3 <yfocus (IHDR>) (13)
max(IHDR)

which normalises the input HDR image by its maximum value, i.e. ensures
that regardless of the dynamic range of the image, the network receives input
between 0 and 1 as expected.

Originally the Yolovh model is designed and trained for LDR images. Dur-
ing training mosaic data augmentation as well as horizontal, vertical flipping,
scaling, shifting, and colour space augmentation were applied. All the aug-
mentation were replicated during the training for all the datasets. The images
were normalised before proceed to the Yolovb model which makes the cost of
computation the same for all image types. The models were trained from the
scratch and run for 2000 epochs with a batch size of 16. The hyperparameters
were kept as proposed in the original resource [10] without any fine tuning.
The device used for testing and training the models used an Intel 19-9980XE
CPU and an NVIDIA Quadro RTX 5000 GPU, running Ubuntu 18.04+ as an
operating system using CUDA 10.1, python3.7 and torch 1.4.0 libraries.

6 Results and Discussion

6.1 Results

The performance comparison of models using different datasets is shown in
Table. 1. The table lists mAP50 (mAP at the intersection over union (IOU)
threshold 0.5) and mAP (average of mAP at IOU thresholds 0.5-0.95 at an
interval of 0.05) for each fold and average of the folds.

The average of mAP50 and mAP for folds shows improvement of 7.4%
and 4.8% respectively for the HDR image based model compared to the single
optimal-exposure image based model. Although the mAP50 reaches 98.9%, the
mAP is below 67.7% for all the models this is because the mAP90 and mAP95
(mAP at IOU threshold 0.90 and 0.95 respectively) were low i.e. up to 0.106
and 0.007 respectively for the models. In object detection, correct and tight
annotation is always an issue whereas, specific to the problem splits start and
vanish gradually without any clear edge which causes the length of the splits
to vary depending on the annotator.

For the further evaluation of the performance IOU threshold of 0.5 was
selected since in the sheet metal stamping defect detection task cost involved
in detecting a defect is significantly higher than the cost involved in the pre-
cise detection. Using 0.5 IOU threshold at different confidence threshold the
true positive (TP: a defect predicted as defect with having IOU greater than
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Fig. 4 Shows (a), and (b) Recall and False positive plots respectively with respect to
confidence threshold, and (c) receiver operating characteristic (ROC) curve at IOU threshold
of 0.5.

Table 2 Methods ranked based on mean accurate prediction with combined Cochran’s
Q-value and the groups represent where there are no significant difference between methods

Models with Mean Ranking | Q-Value | Sign |
d ) |
HDR 3_images ReinhardTMO WardHistAdjTMO LDR 27.8049 | P<0.0001
(0.993) (0.972) (0.965) (0.924) (0.903)

a threshold), false positive (FP: good regions predicted as defects), and false
negative (FN: the defects are not predicted) were evaluated for each fold and
added to calculate the total for the models. Further, the recall, FP at differ-
ent confidence thresholds and ROC curve were estimated, where a significant
improvement for our proposed models was observed as shown in Fig. 4.

To further verify the significance of the models performance, Cochran’s Q
test was conducted for all the defects and predictions from model with a con-
fidence higher that 0.2. To carry out the study for each defect, overlapping of
predictions were calculated and and IOU greater than 0.5 is considered as ”1”
(correct prediction) otherwise ”0” (not correctly predicted). For the combined
test the Q-value (27.8) is larger than Q-Critical (9.5) at 0.95 confidence level
and 4 degrees of freedom. Further post-hoc pair wise Q-tests were carried out.
The statistical test results are shown in Table. 2. The methods are grouped
together has no significance difference are found, however there are significant
difference between separate groups. For example except WardHistAdjTMO
all other HDR based methods has significant difference from traditional LDR
based model.

Additionally Chi-square hypothesis test were conducted on TP and FP results
for various confidence thresholds comparing HDR and HDR representation
based models with LDR based model. Chi-square hypothesis tests at the
0.95 confidence level were conducted to examine the significance of the dif-
ference. From the chi-square test, it was found that, the improvement for
WardHist AdjTMO based model is not significant, whereas ReinhardTMO
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Fig. 5 Shows column plots of (a) true positives, (b) false negatives, and (c) false positives
at confidence thresholds 0.2, 0.3 and 0.4 with IOU 0.5.

Table 3 Time taken for data loading and inference of methods. The time shows in seconds

Task ‘ Best-exposure 3-images ReinhardTMO WardHistAdjTMO HDR
Dataload 0.000016 0.000016 0.000016 0.000016 0.000016
Inference 0.006976 0.008118 0.006902 0.006846 0.006771

showed significant improvement of recall at 0.1, 0.15, 0.2, 0.3 and 0.35 con-
fidence thresholds and significant reduction of FP at 0.1, 0.2, 0.3, 0.35, 0.4,
and 0.45 confidence thresholds. The 3-images based model showed significant
improvement in recall at all confidence thresholds, but for the reduction in
false positives, the model was significant at 0.35, 0.4, 0.45, 0.5, 0.65, 0.7, 0.75
confidence thresholds. Finally, our proposed HDR model shows a significant
improvement for recall as well as a significant reduction of FPs at all confidence
thresholds.

Although a higher recall for the 3-image dataset was observed above the
0.4 confidence threshold, the highest recall achieved by the model was 0.972.
The same recall was achieved by HDR models with lower false positives which
can be observed from the ROC curve (Fig. 4 (a)). Further for the clarity of the
results column plots showing TP, FN, and FP at 0.2, 0.3 and 0.4 confidence
thresholds are shown in Fig. 5. From the 144 splits in the dataset, TP shows
correctly detected splits and FN shows splits which are not detected. Whereas,
FP shows the predictions which are incorrect. From Fig. 4 and Fig. 5 it is clear
that the HDR based model not only improves the accuracy of prediction but
also reduces the number of incorrect predictions, which is highly beneficial as
outlined in section 4.

The data loading and inference time were computed for all the methods as
presented in Table. 3. In the study, the HDR images are processed to adapt
as input to the CNN model. Therefore the time required for data loading and
model inference is compared. Except for the 3-images model, all other model
takes similar time for inference. In contrast, all image types took similar data
loading times since, irrespective of image type, the images are normalised to
[0, 1] before passing through the CNN layers.
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Best-Exposure 3-Images ReinhardTMO WardHistAdjTMO HDR

Fig. 6 Qualitative results: showing prediction (dotted blue box) and ground truth (solid
green box) on samples of all datasets at confidence threshold 0.2 and IOU threshold 0.5.
(Row 1 and Row 2) for test set with FN in optimal-exposure and WardHistAdjTMO image
and FP in the optimal-exposure image, and (Row 3) shows FP on good samples

6.2 Visualisation of Detection

Fig. 6 shows qualitative results from the models on the test images at a
confidence threshold of 0.2, where row 1 shows examples of FN from the
optimal-exposure and WardHistAdjTMO image based models, and row 2
shows FP predictions for the optimal-exposure image based model. Most of the
FN and FP in optimal-exposure images were observed in the higher brightness
regions of the image as expected. Our proposed use of HDR imaging is able to
overcome this limitation.

The FN and FP prediction from HDR dataset at 0.2 confidence threshold
for 0.5 IOU threshold are shown in Fig. 7. From Fig. 5 (c) the HDR based
model shows 6 FP compared to 32 FP for traditional LDR based methods
at 0.2 confidence whereas increasing the confidence threshold to 0.3 reduced
the FP to 2. The only FN found on the dataset shown in Fig. 7 (a) was
analysed and found that for the sample the thickness reduction was mild and
the reduction can only be observed on the rear side of the sample which is rare
in the dataset. This can be solved with a higher number of similar samples
followed by weighting the dataset to balance the defect type. Fig. 7 (b, ¢, and
d) shows false predictions in the defective test set and Fig. 7 (e, f, and g) shows
the false predictions on good samples. From the figure, it can be seen that all
of the false predictions came from the scratch marks on the samples or from
multiple predictions of the same defects. Increasing the number of scratch data
in training can further reduce the wrong prediction.
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Fig. 7 Shows the missed and false detection from HDR test set, where ground truth is
depicted in solid green box and predictions are in dotted blue box. In figure (a) depict FN,
(b), (c), (d) depicts FP in defective samples, (e), (f), and(g) depicts FP in good samples.
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Fig. 8 shows column plots for recall of (a) defect group green, and (b) defect group blue.

6.3 Effect of Intensity of Light

As discussed in section 3, the captured information can vary depending on
the crack position and light reflection. Therefore, in this section, we compare
the results from HDR and the other HDR representation-based models with
traditional LDR-based model results for both the group of defects as clustered
in section 3. Fig. 8 shows column plots for recall for both groups of defects
at 0.2, 0.3 and 0.4 confidence thresholds. As observed in Fig. 1 (b), all model
recalls are comparable for this group (blue) of defects. However, the group of
defects in the reflection region showed 20% improvement in recall. Whereas
other HDR representation models showed 17%, 14% and 4.6% improvement for
the sequence of images, ReinhardTOM and WardHistAdjTMO, respectively
(see Fig. 1 (a)). From the results, it is clear that most of the improvement of
our proposed method comes from defects that fall under the reflection area.
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Table 4 Distribution of defects in Dataset

Defects Number | Number | Number
in Sample of Samples | of Splits | of Necks
Splits Only 80 80 0
Necks Only 16 0 16
Necks and Splits 24 24 24
Total 120 104 40
(a) (b)
1.0 1.0
0.8 | 0.8
= 0.6 = 06
© m©
3 3
3 o
0.4 0.4
0.2 0.2
0.0 0.0
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N Best-Exposure m 3-Images = ReinhardTMO WardHistAdjTMO == HDR

Fig. 9 shows column plots for recall of (a) necks, and (b) splits.

6.4 Effect of Geometry

Similar to the reflection of light, defects’ geometry can affect the result matrix.
Therefore, in the study, defects are divided into two subsets: necks and splits,
where splits are cracks that split the sample, and necks are local thinning. In
most studies, the experimenter divides the necks and splits them visually. How-
ever, in this study, the defects are divided into necks and splits based on there
variance and location of crack. The defect is labelled as splits when the vari-
ance is above a threshold. Otherwise, they are labelled as necks. However, the
variance can be less when the defect is present in a bright scene area. There-
fore, the optimal exposure image pixels were first clustered into bright and
normal pixels using K-means clustering based on their intensity values. Then,
depending on the location of the defects in the image, the defects are assigned
as bright or normal defects. Further variance thresholds were determined by
correlating variance with physical samples. The final table of the neck and
splits defects are shown in table 4, and a comparative result for recall of both
groups are presented in Fig. 9. From Fig. 9, recall for the splits are comparable,
whereas for necks, the HDR-based model improves recall by 20% compared to
the traditional LDR-based model. Similarly, other HDR variations achieved
considerable improvement in recall, as observed from Fig. 9.
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6.5 Discussion and Limitations

The study’s main aim was to propose an HDR-based framework that per-
forms better in harsh lighting conditions. To achieve better model performance
requires the ability to extract relevant information from high contrast images
from a typical manufacturing scene. In section 3 we show that maximum
information of the presence of a defect in a whole image and a partial part
of image can appear at separate exposure. The appropriate exposure level
depends on the location of the defect on the inspected part with respect to
the location and intensity of a reflection from a light source. This finding is
the basis of our hypothesis/motivation that HDR imaging is necessary for
inspection of sheet metal components in an industrial environment (see Fig.
1). The results (see Table 1) and subsequent statistical study show that using
HDR images with CNN models can improve the detection recall and reduce
the number of false predictions compared to LDR-based models. In particu-
lar, our HDR-based framework performs better at detecting defects where the
details are not captured by a traditional LDR image and difficult to detect
objects such as necks, as shown in Fig. 8 and Fig. 9 respectively. Moreover, the
study also implemented various HDR representations such as the sequence of
images, and tone-mapped images can improve performance over LDR images.
However, from Table 2, HDR images can beat all other methods significantly
except methods using the sequence of images. However, the sequence of images
(3-images) takes more processing time compared to other methods.

The proposed framework is not limited to split or neck classes of defects.
Depending on the industrial requirement, this framework can detect other
defects, such as wrinkles, edge cracks and scratches in stamping parts where
extreme lighting conditions are a concern. A CNN model using the proposed
framework can be trained to detect other classes of defects using a dataset
containing sufficient labelled examples of the defects class of interest.

In this study, the HDR-based YOLOv5 model was used. In the framework,
the HDR data are processed to adapt as input to the CNN model without
changing the model architecture. Therefore the framework can be easily inte-
grated with other CNN-based models with minor changes. Further, the data
loading time and inference time are computed as presented in Table 3. The
data loading and inference time for HDR and LDR images are similar because,
irrespective of the image type, the data are normalised between [0, 1] before
passing through the CNN model. Although capturing multiple images can
increase the time of inspection for HDR images. However, the specialised HDR
camera can complete the task in a single shot. Several industries using human
vision and CV-based inspection could benefit from our research, particularly
inspections struggling with extreme lighting conditions.

Although the results show in Section 6 are promising and improvements
in defects detection are indeed possible using HDR, image based CNN models,
there are several limitations to the current framework. A major limitation of
using the technique on an assembly line where the time available for detection is
constrained. Taking multiple exposure images using the same camera takes few
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seconds. This however can be solved by using native HDR cameras. Secondly,
image annotation for HDR imaging is not easy to do as there is no software
available for HDR image annotation. Another limitation is there are no large
HDR datasets for object detection available compared to its LDR counterpart
such as PASCAL VOC, and msCOCQO. This is an area we intend to tackle as
future work. Finally, there are few limitations native to this work. Fine-tuning,
and anchor box optimisation were not carried out in the study, which improves
the accuracy of object detection models significantly. Another limitation was
that a total of 150 sample images were used in the study including 30 good
samples which include one object class and single lighting condition. Further
testing using higher number of samples with several sheet metal stamping
parts, lighting conditions, and defect classes can determine the efficacy of the
framework in higher accuracy.

7 Conclusion

In this article, we proposed a framework using HDR imaging and deep learning
to automate defect detection under a wide range of illumination conditions.
This is suitable for production lines which require high speed and accuracy of
detection alongside minimal false positive rates. To validate our approach, we
studied split and neck defect detection on “Nakajima” or waisted-geometry
test samples. However, this method can also be used to detect other classes
of defects in sheet metal stamping parts and easily be adopted into exist-
ing or future deep learning frameworks. We investigated four representations
of HDR data, including native HDR values, tone mapped images, exposure
sequences and optimally exposed images. Native HDR imaging showed a sig-
nificant improvement of 7.4%, and tone mapped images also exhibited a 5.1
- 5.5% improvement over using LDR images, alongside a substantial drop in
the false positive rate. We believe that our approach is a step forward in reli-
able automated defect detection and we hope that this type of approach will
be adopted in production contexts.

Declarations

Authors contribution

Material preparation was performed by AS and SH. Data collection and anal-
ysis were performed by AS, TB, DM, KD, SH. The frst draft of the manuscript
was written by AS. TB, KD, SH commented on previous versions of the
manuscript. All authors read and approved the final manuscript.

Funding

This research was financially supported by the Warwick Manufacturing Group
of University of Warwick. Award Number: WIIT, received by Aru Ranjan
Singh.



Springer Nature 2021 BTEX template

HDR Image-Based Deep Learning Approach for Automatic Detection of Split Defects on Sh

Availability of data and materials

The datasets used or analysed during the current study are available from the
corresponding author on reasonable request.

Code availability

The code used during the current study are available from the corresponding
author on reasonable request.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing Interests

The authors declare no competing interests.

References

[1] Small, N.: A statistical method for determining and representing forma-
bility innovation report. Thesis (2015)

[2] Wang, H., Liu, L., Wang, H., Zhou, J.: Control of defects in deep drawing
of tailor-welded blanks for complex shape automotive panel (2021)

[3] Ghosh, S.: Principally on sheet metal forming defects as described in
the eleventh biennial congress of the international deep drawing research
group (iddrg). International Journal of Mechanical Sciences 23(4), 195
211 (1981)

[4] Shen, Y., Sun, H., Xu, X., Zhou, J.: Detection and positioning of surface
defects on galvanized sheet based on improved mobilenet v2. In: 2019
Chinese Control Conference (CCC), pp. 8450-8454 (2019)

[6] Garcia, C.: Artificial intelligence applied to automatic supervision, diag-
nosis and control in sheet metal stamping processes. Journal of Materials
Processing Technology 164, 1351-1357 (2005)



Springer Nature 2021 BTEX template

26 HDR Image-Based Deep Learning Approach for Automatic Detection of Split Defect:

[6] Andreopoulos, A., Tsotsos, J.K.: 50 years of object recognition: Direc-
tions forward. Computer vision and image understanding 117(8), 827-891
(2013)

[7] Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look
once: Unified, real-time object detection. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 779-788
(2016)

[8] Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-
time object detection with region proposal networks. Advances in neural
information processing systems 28, 91-99 (2015)

[9] Everingham, M., Eslami, S.M.A., Van Gool, L., Williams, C.K.I., Winn,
J., Zisserman, A.: The pascal visual object classes challenge: A ret-
rospective. International Journal of Computer Vision 111(1), 98-136
(2015)

[10] Jocher, G., Stoken, A., Borovec, J., NanoCode012, ChristopherSTAN,
Changyu, L., Laughing, tkianai, Hogan, A., lorenzomammana, yxNONG,
AlexWang1900, Diaconu, L., Marc, wanghaoyang0106, ml5ah, Doug, Ing-
ham, F., Frederik, Guilhen, Hatovix, Poznanski, J., Fang, J., Yu, L.,
changyu98, Wang, M., Gupta, N., Akhtar, O., PetrDvoracek, Rai, P.: ultr-
alytics/yolovh: v3.1 - Bug Fixes and Performance Improvements (2020).
https://doi.org/10.5281/zenodo.4154370

[11] Siekirk, J.F.: Process variable effects on sheet metal quality. Journal of
Applied Metalworking 4(3), 262-269 (1986)

[12] Zhang, W.: Design for uncertainties of sheet metal forming process. PhD
thesis, The Ohio State University (2007)

[13] Majeske, K.D., Hammett, P.C.: Identifying sources of variation in sheet
metal stamping. International Journal of Flexible Manufacturing Systems
15(1), 5-18 (2003)

[14] Cao, J., Kinsey, B.L., Yao, H., Viswanathan, V., Song, N.: Next generation
stamping dies—controllability and flexibility. Robotics and Computer-
Integrated Manufacturing 17(1-2), 49-56 (2001)

[15] Cha, Y., Choi, W., Biiyiikoztiirk, O.: Deep learning-based crack damage
detection using convolutional neural networks. Computer-Aided Civil and
Infrastructure Engineering 32(5), 361-378 (2017)

[16] Li, W.-b., Lu, C.-h., Zhang, J.-c.: A local annular contrast based real-time
inspection algorithm for steel bar surface defects. Applied Surface Science
258(16), 60806086 (2012)


https://doi.org/10.5281/zenodo.4154370

Springer Nature 2021 BTEX template

HDR Image-Based Deep Learning Approach for Automatic Detection of Split Defects on Sh

[17] Block, S.B., da Silva, R.D., Dorini, L.B., Minetto, R.: Inspection of
imprint defects in stamped metal surfaces using deep learning and
tracking. IEEE Transactions on Industrial Electronics 68(5), 4498-4507
(2020)

[18] Yang, Y., Yang, R., Pan, L., Ma, J., Zhu, Y., Diao, T., Zhang, L.: A
lightweight deep learning algorithm for inspection of laser welding defects
on safety vent of power battery. Computers in Industry 123, 103306
(2020)

[19] Cha, Y.-J., Choi, W., Suh, G., Mahmoudkhani, S., Biiyiikkoztirk, O.:
Autonomous structural visual inspection using region-based deep learn-
ing for detecting multiple damage types. Computer-Aided Civil and
Infrastructure Engineering 33(9), 731-747 (2018)

[20] Li, J., Su, Z., Geng, J., Yin, Y.: Real-time detection of steel strip surface
defects based on improved yolo detection network. IFAC-PapersOnLine
51(21), 76-81 (2018)

[21] Zhuxi, M., Li, Y., Huang, M., Huang, Q., Cheng, J., Tang, S.: A
lightweight detector based on attention mechanism for aluminum strip
surface defect detection. Computers in Industry 136, 103585 (2022)

[22] Zhang, J., Qian, S., Tan, C.: Automated bridge surface crack detec-
tion and segmentation using computer vision-based deep learning model.
Engineering Applications of Artificial Intelligence 115, 105225 (2022)

[23] Yao, J., Li, J.: Ayolov3-tiny: An improved convolutional neural net-
work architecture for real-time defect detection of pad light guide plates.
Computers in Industry 136, 103588 (2022)

[24] Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y.M.: Yolov4: Optimal speed and
accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)

[25] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X.,
Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et
al.: An image is worth 16x16 words: Transformers for image recognition
at scale. arXiv preprint arXiv:2010.11929 (2020)

[26] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.:
Swin transformer: Hierarchical vision transformer using shifted windows.
In: Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 10012-10022 (2021)

[27] Gao, L., Zhang, J., Yang, C., Zhou, Y.: Cas-vswin transformer: A variant
swin transformer for surface-defect detection. Computers in Industry 140,
103689 (2022)



Springer Nature 2021 BTEX template

28 HDR Image-Based Deep Learning Approach for Automatic Detection of Split Defect:

[28] Severstal: Severstal: Steel defect detection. Kaggle (2018)

[29] He, Y., Song, K., Meng, Q., Yan, Y.: An end-to-end steel surface
defect detection approach via fusing multiple hierarchical features. IEEE
Transactions on Instrumentation and Measurement 69(4), 1493-1504
(2019)

[30] Bozi¢, J., Tabernik, D., Skoc¢aj, D.: Mixed supervision for surface-
defect detection: from weakly to fully supervised learning. Computers in
Industry 129, 103459 (2021)

[31] Weimer, D., Scholz-Reiter, B., Shpitalni, M.: Design of deep convolu-
tional neural network architectures for automated feature extraction in
industrial inspection. CIRP Annals 65(1), 417-420 (2016)

[32] Tabernik, D., Sela, S., Skvarc, J., Skocaj, D.: Segmentation-based deep-
learning approach for surface-defect detection. Journal of Intelligent
Manufacturing 31(3), 759-776 (2020)

[33] Banterle, F., Artusi, A., Debattista, K., Chalmers, A.: Advanced High
Dynamic Range Imaging, pp. 45-93. CRC press, New York (2017). https:
//doi.org/10.1201 /9781315119526

[34] Rana, A., Valenzise, G., Dufaux, F.: Evaluation of feature detection in hdr
based imaging under changes in illumination conditions. In: 2015 IEEE
International Symposium on Multimedia (ISM), pp. 289-294 (2015).
IEEE

[35] Mukherjee, R., Bessa, M., Melo-Pinto, P., Chalmers, A.: Object detection
under challenging lighting conditions using high dynamic range imagery.
IEEE Access 9, 7777177783 (2021)

[36] Debevec, P.E., Malik, J.: Recovering high dynamic range radiance maps
from photographs. In: ACM SIGGRAPH 2008 Classes, pp. 1-10 (2008)

[37] Nakajima, K., Kikuuma, T., Hasuka, K.: Yawata technical report no. 284.
Yawata, Japan, 678-90 (1971)

[38] Reinhard, E., Stark, M., Shirley, P., Ferwerda, J.: Photographic tone
reproduction for digital images. In: Proceedings of the 29th Annual Con-
ference on Computer Graphics and Interactive Techniques, pp. 267-276
(2002)

[39] Larson, G.W., Rushmeier, H., Piatko, C.: A visibility matching tone repro-
duction operator for high dynamic range scenes. IEEE Transactions on
Visualization and Computer Graphics 3(4), 291-306 (1997)


https://doi.org/10.1201/9781315119526
https://doi.org/10.1201/9781315119526

Springer Nature 2021 BTEX template

HDR Image-Based Deep Learning Approach for Automatic Detection of Split Defects on Sh

[40] Tzutalin: Labellmg. GitHub. Accessed: 17-01-2023 (2015). https://
github.com/tzutalin/labellmg/

[41] Ridnik, T., Lawen, H., Noy, A., Ben Baruch, E., Sharir, G., Friedman, I.:
Tresnet: High performance gpu-dedicated architecture. In: Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision,
pp. 1400-1409 (2021)

[42] Reinhard, E.: Parameter estimation for photographic tone reproduction.
Journal of graphics tools 7(1), 45-51 (2002)


https://github.com/tzutalin/labelImg/
https://github.com/tzutalin/labelImg/

	Introduction
	Background and Related Work
	Sheet Metal Stamping
	Deep Learning for Sheet Metal Stamping Defects Detection
	HDR Technology
	Tone-mapping
	HDR based object detection


	Theoretical Motivation for using HDR Imaging
	Proposed Framework
	HDR image capture
	CNN Model
	Adapting HDR images as CNN inputs

	Experiments
	Sample Preparation
	Datasets Creation
	Equipment
	Procedure
	Image processing
	Image Annotation

	Implementation Details

	Results and Discussion
	Results
	Visualisation of Detection
	Effect of Intensity of Light
	Effect of Geometry
	Discussion and Limitations

	Conclusion

