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Generating Synthetic Training Images to Detect Split Defects in Stamped
Components

Aru Ranjan Singh, Thomas Bashfod-Rogers, Sumit Hazra, and Kurt Debattista.

Abstract— Detecting rare and costly defects, such as necks
and splits in sheet metal stamping, remains challenging for deep
learning models due to low failure rates entailing few available
samples to train on. Synthetic images provide a simulated alter-
native; however, the two main current approaches have limitations
for generating split defect images. Image synthesis-based models
generate implausible training data, while physics-based models
are computationally expensive and lack the diversity required.
To address this, we present a novel method combining the ad-
vantages of physics-based simulation with synthetic-based defect
generation. The method first generates deformed 3D geometry
through finite element simulation with plausible split locations
determined using a forming limit curve. Subsequently, the fine
details of captured real splits are mapped to the identified locations
to generate realistic defect features. Our results show that training
a deep neural network with the addition of synthetic images im-
proves the performance significantly.

Index Terms— Defect detection, Synthetic data, Finite el-
ement simulation, Industrial inspection, Sheet metal stamp-
ing.

I. INTRODUCTION

The manufacturing industry constantly attempts to improve pro-
duction rates without compromising product quality. Sheet metal
stamping is a mass-production process widely used for a range
of products, from white goods to automotive and aerospace body
manufacturing. It can produce complex shapes at tens of parts per
minute. However, like all manufacturing processes, it is susceptible
to surface defects that reduce the quality of the components. Ghosh
[1] provided a comprehensive list of defects that can occur during the
stamping process. Necking and splitting are the most critical defects
in stamped parts and are caused when the plastic deformation in
the material exceeds its forming limits, resulting in a local thickness
reduction or a through-thickness fracture. These defects are critical as
they represent one of the most common types of defects encountered
in stamping operations. Moreover, these defects cannot be reworked
and must be scrapped, further highlighting the significance of their
detection in sheet metal stamping. Since the visual characteristics
of the neck and small split defects are similar, for simplicity, we
shall refer to both defects as split defects for the remainder of the
text. Human visual examination is currently the prevalent method for
identifying these defects in stamped parts. However, splits are subtle
in appearance, so there is a high risk that human inspectors pass
them on for further processing. This increases the overall expense
associated with rejecting these components at later stages.

Recently, machine vision-based approaches have shown potential
for automating and replacing human inspection in several industrial
applications [2]–[4]. In particular, these techniques work well when
processed using deep learning (DL) algorithms. For example, Mangat
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et al. [2] automated human and robot picking and placing tasks, Can-
nizzaro et al. [3] developed an in-situ camera-based defect detection
and monitoring system in additive manufacturing, Yu and Liu [5]
detect wafer map defects in integrated circuits and [4] implemented
DL for 6D pose estimation. Such machine vision-based detection
systems are flexible, non-contact and can achieve high detection
accuracy.

A crucial requirement for utilising DL to process image data is the
generation of a sufficiently large training dataset. This is particularly
problematic for defects which do not occur frequently but have a high
impact on the manufacturing process when they occur. For example,
splits in sheet metal stamping are rare because production processes
are designed to avoid their occurrence. This happens when there
is an unexpected variation in the material properties or processing
conditions (e.g. changes to lubrication). As a result, they may affect
between 1-5 per cent of components, but they can not be repaired and
thus scraped. As a result, not sufficient split defect components for
DL model training. To address this issue, few-shot training methods
are usually used. Few-shot learning refers to approaches that train
models with limited examples. Two main approaches to few-shot
training include pretraining a model on similar data, and using data
augmentation [6].

Pretraining involves training a model on a larger dataset that
contains related or similar objects. By learning from this broader
dataset, the model can capture general features and patterns that
are applicable to the target defect, in this case, split defects. The
pre-trained model can then be fine-tuned with the limited available
data of split defects, enhancing its ability to classify them. However,
most existing defect datasets do not adequately represent split defects,
stamping environments’ lighting and reflection conditions.

Another approach is to utilise data augmentations. Given the
scarcity of split defect samples, traditional data augmentation meth-
ods are restricted to limited training data. In comparison, learning-
based synthetic images fail to generate noise-less images or replicate
the training data. Moreover, the generated synthetic images are
restricted to the training data domain [7]. In contrast, computer
graphics-based synthetic images allow control over the class spec-
ification, objects’ location, lighting and synthetic image style.

Our work proposes a solution to this manufacturing problem
through a novel image synthesis process which combines the
strengths of physically principled defect location estimation and com-
puter graphics-based photorealistic image generation of split defect
for sheet metal stamping. In particular, a deformed 3D geometry
and element-wise strain distribution are estimated from finite element
method (FEM) simulation, from which defect locations are computed
using forming limit curve (FLC). This leads to 3D geometries with
plausible yet randomly distributed split defect locations. Finer details
are then applied to the geometry using a novel mapping function
combined with a dictionary of crack displacement images to generate
a dataset of plausible splits on parts. This is then used to create
photorealistic training data for split defect detection.

The proposed method is evaluated for split defect detection using
several DL-based detectors. Our results indicate that using synthetic
training images improves the model performance across all DL-based
detectors.
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Additionally, the proposed framework is compared with few-
shot methods. Since no work in literature used diffusion model
based method for defect image generation this study finetune stable
diffusion model on our dataset.

To summarise, the main contributions of this work are:
• A framework for generating the datasets of rare and costly

defects essential for the automated inspection of stamped metal
parts. This novel approach leverages computer graphics tech-
niques to create physically accurate and photorealistic split
defect datasets in sheet metal stamping components.

• A novel approach combines FEM and FLC to accurately com-
pute split defect locations. This approach enables us to generate
diverse split defect locations while maintaining physical correct-
ness, thereby enhancing the realism of the synthetic dataset.

• A method for creating diverse split defects using a limited set
of captured defect textures, enhancing the visual variety of the
split defects in the synthetic dataset.

• An extensive evaluation using several deep learning-based detec-
tors. Additionally, a comparative study of our approach against
other few-shot methods. This comparison highlights the superior
performance of our method in detecting rare defects on stamped
metal parts.

II. RELATED WORK

This section presents the related work, including DL-based defect
detection in sheet metal stamping, synthetic training images in
industrial inspection and computer graphics-based synthetic crack
image generation.

A. DL in Stamping Defect Detection

DL models have been widely used in industrial defect detection
tasks, such as detecting rail surface defects [8], [9], weld defects
[10], and surface defects on metal parts [11]. However, the majority of
prior studies on metal parts have utilised flat-rolled steel components,
and there has been limited research on the use of non-uniform
components, such as sheet metal stamping [12]–[14]. Block et al.
[12] demonstrated the detection and tracking of imprint defects
on stamped components. Singh et al. [13], [14] used a dataset
containing representative components for split defect detection and
used CNN based models to detect defects. These studies highlight
that producing defective stamping components for DL model training
is challenging and expensive. For DL-based defect detection in
industrial applications, it is necessary to collect data that may appear
in the entire lifecycle of a manufacturing product [15]. This indicates
the importance of computer graphics-based synthetic data generation
for DL defect detection, where the defect type and class can be
controlled and generated efficiently.

B. Synthetic Training Data in Industrial Inspection

The studies on image synthesis methods used to train DL models
can primarily be divided into two groups: learning-based models [3],
[16], and classical computer graphics-based methods [17]. Although
modern state-of-the-art learning-based models can create convincing
synthetic images, the models require significant training data. Siu et
al. [17] argued that generative models are susceptible to convergence
problems and require additional training data. Additionally, Zhao et
al. [7] discussed that learning-based models tend to replicate the
training data when the dataset size is small, leading to overfitting
of models. Moreover, these models generate images with similar
characteristics to the training images resulting in rare improvement
in the diversity [15].

In contrast, computer graphics-based synthetic images allow con-
trol over the class specification, objects’ location, and synthetic image
style. Studies have used computer graphics to produce synthetic
training images for object detection tasks [18], including industrial
object detection [2], [19]. Mangat et al. [2] generated synthetic images
for an object-picking task without considering realistic appearance,
whereas, Li et al. [19] used synthetic images for industrial bin packing
from small cluttered parts. However, relatively little prior research
has employed synthetic datasets for surface defect detection on metal
parts, such as castings [20], boiler pipes [21], and flat steel slabs [22].
Moreover, no prior study has attempted to employ synthetic datasets
in stamping defect detection.

C. Computer Graphics-based Synthetic Training Data for Crack
Defect Detection

Two primary approaches for crack modelling are physics-based and
synthetic-based. Physics-based models involve simulating physical
phenomena in a virtual environment based on known material proper-
ties and process parameters. FEM is the most common approach for
realistic crack synthesis in computer graphics [23] and is extensively
used in sheet metal stamping during product development and process
optimisation [24] together with forming limit curves [25]. FLC is a
ubiquitous split defect criterion in the sheet metal stamping process
[25]. However, physics-based models lack in generating diverse
defects required in the training dataset, as replicating the noise in
material and stamping processes is difficult. Moreover, physics-based
models are computationally expensive.

In contrast, synthetic-based models map a procedurally created
or example-based image of a split known as a texture onto a 3D
geometry to change the appearance of the surface without considering
physical factors. This process of mapping a 2D image texture to a
3D surface is broadly known as texture mapping.

All the existing studies used synthetic-based models to create
synthetic training data for split defects. Kondarattsev et al. [21]
and Siu et al. [17] apply real defect textures to a cylindrical 3D
CAD model for realistic defect generation on boiler pipes and sewer
pipes, similarly, Zhai et al. [10], and Boikov et al. [22] procedurally
generated defect textures on random locations of flat 3D models.
These approaches focus on simplified geometries, such as planes or
cylinders, however, real parts have more complicated geometries and
therefore exhibit a non-uniform distribution of cracks over the surface
which existing methods cannot represent. In contrast, DL models
perform greatly well when the test and train samples have the same
distribution [9]. Therefore, combining the advantages of physics-
based and synthetic-based approaches, our method overcomes this
limitation.

III. MOTIVATION

The motivation for our hybrid method, which combines image
texturing-based approaches and physics-based approaches, is rooted
in removing the limitations of existing techniques for generating
computer graphics-based synthetic datasets for split defect detec-
tion. Previous studies have employed two primary approaches for
split/crack defect modelling: physics-based models and texturing
methods (discussed in Section II).

Physics-based models provide a high level of physical accuracy in
simulating defects. However, no prior study has used physics-based
models for generating split defect training datasets, primarily due
to the following reasons: 1) The resolution of the mesh in the FEM
simulation needs to be extremely high to compute the required details,
leading to high memory and computational costs, 2) Replicating noise
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Fig. 1: Pipeline for stamping defect detection using synthetic images. The left box shows model training and implementation in the production
line shown on the right. During training the model fuse synthetic data (above the dotted horizontal line) and real data (below the dotted
horizontal line) for optimal training depending on real data availability. The synthetic data are generated in two stages: physically principled
3D models and defect location generation (grey dotted box) and photorealistic image generation using computer graphics (blue dotted box).

in real-world processes and material parameters is difficult, resulting
in limited variations of defects in the datasets.

On the other hand, texturing methods have been widely used
to generate synthetic training datasets for defect detection. These
methods are computationally efficient and produce visually realistic
defects. However, they often overlook the physical accuracy of the
components and fail to capture the non-uniform distribution of defects
observed in real parts. As a result, the generated datasets do not fully
represent the complexity and diversity of real-world processes in sheet
metal stamping.

To overcome these limitations, our study proposes a novel hybrid
technique that combines physics-based and texturing methods. By
integrating the strengths of both methods, we aim to generate a
synthetic dataset that exhibits physically accurate defect features,
visually realistic images, and a diverse representation of defect
locations. This approach enhances the realism and accuracy of the
generated dataset and improves the performance of deep learning
models in split defect detection on sheet metal stamping components.

The challenge of producing real defective stamping components
for validation requires a component that visually represents splits
in real-world stamping parts and can be easily produced in a
controlled environment. To meet this requirement, we validated our
proposed method using Nakajima samples [26]. These samples are
utilised in the limiting dome height test, which is a standardised test
(ISO112004-2:2008) designed to evaluate the formability of sheet
metal materials and simulate the complex loading conditions that
occur during stamping. The open die tool used in the test allows for
the monitoring of crack appearance and severity during the stamping
process, unlike the fully closed tooling used in production. Because
of the simulative nature of the limiting dome height process, the
appearance of the splits and necks in the Nakajima sample is visually
representative of those in production components, making it a suitable
tool for validating the proposed method.

IV. SYNTHESISING STAMPING IMAGES

In this section, the proposed image synthesis pipeline is introduced
in detail. The overall pipeline of the proposed method is shown in
Fig. 1. Depending on the availability of real images, the pipeline can
fuse synthetic and real data for optimal model training. The synthetic
image generation pipeline is divided into two stages. Stage 1, the
physically principled method used to obtain plausible defect location,
is shown in the grey dotted box in Fig. 1. Stage 2, the computer
graphics method used to generate a photorealistic defective dataset,

Fig. 2: Illustrates the parameterised FLC and corresponding defective
elements on a simulated Nakajima sample. The solid black line
represents the standard FLC (a, p = 1). When a is set to the safety
margin and the weight parameter p = 1, the FLC and corresponding
defective elements are highlighted in red. As p is decreased, such that
pmin < p < 1, the FLC and the newly assigned defective elements
are shown in blue, and for p = pmin highlighted in green.

Fig. 3: Illustrates the steps of physical principled models and defect
locations generation. (i) Creating CAD models and arranging for the
stamping simulation, (ii) FEM simulation, and (iii) the FLC-based
algorithm used to generate 3D models with diverse yet random defect
locations.

is shown in blue dotted box in Fig. 1. The details of stages 1 and 2
are described in Sections IV-A and IV-B, respectively.

A. A Novel Application of FEM and FLC for 3D Model
Generation with Physically Principled Defect Locations

In sheet metal stamping, the components are designed to undergo
deformation within a permissible threshold to avoid defects. FLC is
a common defect criterion used during the stamping process design,
which is a map of two principal strains that indicates the threshold
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Fig. 4: Shows the deformed geometry with highlighted defective
elements for three different values of parameter p: p = 1, pmin <
p < 1, and p = pmin, in reading order (line 13). The shades of
grey represent different defect clusters (line 14). The boxes show the
clusters selected for defect appearance in the final image (line 15).
Finally, the enlarged box highlights the randomly picked element per
cluster that serves as the origin of the split (line 16).

TABLE I: Algorithm to determine the defect locations.

Input: 3D geometry and principal strains ϵ(ϵ1, ϵ2)
for all elements E from FEM simulation

Results: Geometries with Random defect locations
For every synthetic image

1: p← U(b, 1)
2: Initialise a dictionary for defective elements Dd

3: for each element e in E do
4: if ϵ2 > 0 do
5: if ϵ1 ≥ a ∗ p ∗ ϵ0 + sr ∗ ϵ2 do
6: Dd ← e
7: end
8: else
9: if ϵ1 ≥ a ∗ p ∗ ϵ0 − sl ∗ ϵ2 do

10: Dd ← e
11: end
12: end
13: end
14: Cluster Dd using DBSCAN and remove outliers
15: One or more cluster picked randomly
16: Randomly pick an element as the start of defect

for splitting. The FLC failure condition can be expressed as follow:

ϵ1 > flc(ϵ2) (1)

Where (ϵ1, ϵ2) ∈ R2 are the major and minor strains, respectively
and flc(·) is the function representing the FLC of the material. A
typical FLC is shown in a solid black line in Fig. 2.

The FLC is a function of material properties such as strain hard-
ening coefficient, strain path and thickness. However, uncertainties
in the material and stamping processes cause the splits to originate
during the stamping at various locations below the threshold and
propagate, resulting in a variety of split defects at various locations
in different samples for the same component. To replicate it in
our synthetic dataset, this subsection aims to create multiple 3D
models for a single component that feature diverse yet realistic defect
locations, while utilising minimal computation cost. To achieve this,
we propose a series of steps, as depicted in Fig. 4. The first step
involves creating CAD models of the components and the stamping
tools. These models are then used in a FEM simulation, which is
performed on a per-part basis. The outcome of the simulation is a
deformed 3D model with element-wise strain distribution. Finally,
using an FLC-based algorithm, multiple 3D models with diverse and
realistic defect locations are generated from a single FEM simulation.
The algorithm is described in detail in Table I.

The proposed algorithm assumes that for numerous stamping of
the same part, the uncertainty is uniformly distributed throughout
the material. Hence the likelihood of a defect appearing in an
element increases depending on how close the strain distribution is
to the threshold of the defect criteria. Given the above assumption,
we modified the FLC function by introducing extra parameters
as flcp(a, p, ϵ0, sl, sr, ϵ2) to incorporate the uncertainty into the

simulation. The detailed implementation of the FLC is outlined in
lines 3-13 in the algorithm. Here, ϵ0 is defined as the y-intercept
of FLC and is calculated from strain hardening coefficient n and
thickness of material t using formula ϵ0 = n

0.21 (23.3 + 14.3t)
proposed by Keller and Brazier [27]. sl and sr are the slopes of the
threshold lines on the left and right sides from the y-intercept. Finally,
a is a hyperparameter that accounts for the safety factor, and random
variable p, sampled from a uniform distribution p ∼ U(pmin, 1), is
used to weight the elements being defined as defective based on their
proximity to the threshold. For example, at a equal to the safety factor
and p = 1 (i.e p1) the elements assigned as defective visually can be
seen in red colour in Fig. 2. However, as p reduced to pmin < p < 1,
both red and blue elements are assigned as defective, as depicted in
Fig. 2. Thus, elements that are defined as defective at higher values
of p or with a strain distribution closer to the threshold have a higher
probability of being assigned as the origin of the defect. The extreme
uncertainty that can appear in the material is represented by pmin,
which can be obtained either from pilot runs or by approximating an
experimental FLC.

Further in the algorithm DBSCAN clustering was employed to
cluster the defect regions (line 14), as defects in stamping can appear
in multiple locations on a sample. These defect clusters are visualised
in different shades of grey in Fig. 4. To account for the possibility
of defects not appearing in every defect region, random clusters
are selected for further processing in line 15, as depicted in the
highlighted box in Fig. 4. Finally, a random element is chosen as
the origin of the split defect for each selected cluster in line 16 of
the algorithm, as shown in the enlarged portion of Fig. 4.

The proposed method has two distinct benefits. Firstly, it produces
geometries with random, yet physically plausible, defect locations
without producing fictitious defects. Secondly, the probability distri-
bution of defects is similar to the real defect probability observed in
the literature, for example [25].

B. Realistic Defect Synthesis
To generate photorealistic imagery of these defects, finer defect

details need to be applied to the surface. The fine details can be
achieved by increasing the resolution of the FEM simulation, but this
incurs increasing computational costs and is limited to the physics-
based nature of an FEM solver. Therefore, we add this type of detail
by capturing images of the real defects on a small number of parts,
then apply this to the crack cluster, thereby adding the finer details.
More specifically, we capture bump maps which contain offsets of
heights from the base surface and procedurally apply these to the
clusters before rendering a photorealistic training sample for defect
detection. A comparative image of bump mapping and traditional
texturing with real crack is shown in Fig. 5.

The three steps required to move from a crack origin element
from the FEM simulation to a photorealistic training image are:
aligning the bump maps, defining surface appearance, and rendering
the image. These are outlined in Fig. 6 and described in more detail
in the following subsections.

1) Aligning displacement maps: In sheet metal stamping, the
uncertainty associated with the material (internal defect, grain struc-
ture) and stamping process (wear and tear in machine parts, change
in lubricants) allow defects to originate at random locations and
propagate, resulting in a variety of split defect features at multiple
locations. To capture this, we created split defect geometry in two
steps. First, we used the elements selected in Section IV-A as the
centroid of the defect and then projected the shape of the defect region
onto the 3D mesh. The size of this defect region was sampled from a
dictionary of captured defects from real samples; this dictionary also
includes associated textures described later in this section.
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Fig. 5: Compare real crack (left) with defect mapping using Bump
mapping (middle) and standard texturing (right).

Fig. 6: Illustrates the computer graphics-based synthetic image gen-
eration. The process begins with the models from stage 1 as input
(depicted in the left panel), followed by texture coordinate mapping
(represented in the middle panel). The final output is a generated
synthetic image, displayed in the right panel.

Given a coordinate X ∈ R3 lying on the surface of the mesh and
texture coordinates (u, v) ∈ R2, we need a map f : X 7→ (u, v) to
map 3D positions on the surface of the mesh to a texture coordinate
on the bump map. This mapping needs to be aligned with the regions
of the defective mesh resulting from the previous step (Section IV-A)
but also needs to be further parameterised to ensure random mapping
variants can be generated to produce multiple random samples for
creating the synthetic data set. Therefore, we decompose this mapping
into two steps: g : X 7→ (u, v)′ which maps a point to a base texture
coordinate space (u, v)′ ∈ R2, then a second mapping h : (u, v)′ 7→
(u, v) which distorts the texture coordinates to produce the random
samples. The following sections describes each of the mappings.

To compute g, we analyse the geometry of the cluster to automat-
ically, and optimally (in the ℓ2 sense), produce a mapping which
aligns the crack region on the mesh with a plane containing the
bump map. Firstly, to ensure the texture is mapped to a contiguous
region of the mesh, we first expand the cluster to include all the
vertices of the mesh contained in the bounding box of the original
vertices. We then extract the plane from these vertices by performing
an Eigendecomposition of the covariance matrix of the vertices
from the expanded cluster. The largest two Eigenvectors from the
Eigendecomposition define a plane onto which the vertices from the
cluster are projected, and based on these projected positions, the
initial texture coordinates (u, v)′ are assigned. These have an origin
centered on the element chosen to be the start of the defect (see
Algorithm I, Line 16). This approach has the advantage of computing
a low distortion mapping of a crack displacement map onto the model
while considering the local geometry around the crack region.

For synthetic generation purposes, multiple random variations of
the orientation of this crack displacement are required. Our method
allows this via modification of the texture coordinates resulting

Fig. 7: Shows synthetic images at various steps of the pipeline.

from the map g. This modification leads to the second map h,
which displaces the texture coordinates in a controlled manner.
To ensure controlled and realistic variations, we propose to use a
Bezier curve aligned with the direction of the crack to distort the
texture coordinates. Without loss of generality, we assume that the v′

coordinate of the i’th vertex is being deformed through the mapping
h : (ui, vi)

′ 7→ (ui, C(vi)) where

C(v′i) =
M∑
j=0

Pj

(
M

j

)
(1− v′i)

M−jv′i
j , (2)

describes a Bezier curve with M control points Pj . Large modi-
fications would lead to visible distortions, and too small modifica-
tions would lead to insufficient variation in the synthetic generation
process. Therefore, these values were empirically chosen to lock
the curve displacement map in place through the control points
while providing sufficient variation in the synthetic image generation
process.

This finally results in texture coordinates (ui, vi), which are
suitable for the application of a displacement map which provides the
high frequency details required for realistic crack synthesis. Each of
these displacement maps is created from applying photogrammetry
techniques to capture height variations from cracks on real parts.
Precisely, for each crack, we capture an image of the crack where
the camera is positioned perpendicular to the crack. This image of
the crack is then converted to a displacement map using a technique
such as [28]. We repeated this for several samples containing cracks,
leading to a dictionary of displacement maps containing cracks. Then,
for each synthetic part we wish to generate, we sample a displacement
map randomly from this dictionary and apply it to the surface.

2) Surface Appearance: As this work aims to produce realistic
synthetic data to train defect detection algorithms, we also need
to consider the appearance of the surface of the part, specifically
how the part reflects light. This can be described by a Bidirectional
Reflectance Distribution Function (BRDF) which describes how
much incoming light from any direction is reflected into another
direction. While many models have been proposed in the literature
[29], we use a common microfacet-based model. This describes the
microsurface as a distribution of oriented specular facets described
by a roughness parameter and can simulate the appearance of a wide
range of materials, from rough to highly polished surfaces. We use
the principled BRDF [30] as the reflectance model, and we model
the base reflectance using the index of refraction of the metal part
and combine this with a measured roughness value of the part. We
also modulate this with a procedurally created impurities texture,
including real-world details that may be found on parts, such as
fingerprints and scratches. Fig. 7 shows the appearance of the base
part and the impact and increased realism of adding the impurities
to the part.

3) Rendering: We render defective sheet metal stamping parts
using path tracing [31], a Monte Carlo method for light transport
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Fig. 8: The dictionary of textures used in the experiments

simulation which produces an unbiased estimate of the scene il-
lumination by tracing light paths from the virtual camera into the
scene and connecting these paths to the light sources. This allows
for accurate simulation of all geometric optics based light transport
phenomena that are needed for this work, including colour bleeding
where the colour of one surface is reflected onto other visible surfaces
and caustics which are the patterns formed by light focused through
specular surfaces.

V. EXPERIMENTAL SETUP

This section presents the implementation details of a defect detec-
tion task used to evaluate the performance of the proposed image syn-
thesis method. We use a dataset of real stamping samples produced
in-house and a state-of-the-art CNN model for the experiments.

A. Dataset
As mentioned in Section I, obtaining stamped components which

contain defects for training purposes is difficult because these de-
fects rarely occur during serial production. Additionally, no open-
source datasets for stamping defects are available. Therefore, we
use defective (120) parts produced in-house based on Nakajima
geometry [13]. The parts are produced using a 100 mm punch-to-
punch material of varying widths. The test procedure followed (ISO
12004-2:2008). Although the stamping part has a straightforward
hemisphere shape, the split defects in the parts are representations
of split defects observed in real-world complex parts as described in
Section III. Moreover, the Nakajima parts consist of additional real-
world characteristics such as sharp edges, scratches and lubricants
that share similar features with split defects, which can cause false
predictions. Finally, the reflective nature of metal parts occasionally
saturates defect regions [13], therefore this study used high dynamic
range (HDR) images.

B. Synthetic Dataset
The main objective of our study was to create a realistic synthetic

dataset for training DL models to detect split defects. To achieve this,
we carefully tuned the hyperparameters of the proposed method. As
a reference, we used the experimental FLC developed by Small et
al. [25], considering that both their method and ours utilise the same
aluminium material. The parameters used in our method, denoted as
flcp, were set as follows: the slopes sl and sr were assigned values
of 45◦ and 30◦, respectively. Furthermore, based on the observed
variation in ϵ0 reported in [25], we set pmin to 0.66. It is important
to note that while the initial values were sourced from the literature
[25] as a reference, we performed additional experimentation to refine
and validate these parameter choices.

We implemented a Bezier curve-based distortion technique to
introduce variations in the synthetic images. Considering that the
observed defects in the components have a quadratic curve shape,
we utilised a quadratic Bezier curve with three control points. The
selection of control point values was performed experimentally. The

Fig. 9: Shows from left to right, an example defect texture, corre-
sponding annotated mask for the defect texture, rendered image, mask
and rendered image including the defect annotation.

extreme points were initially determined through experimentation,
and a degree of randomness was achieved via a Gaussian distribution.
The first and last control points of the quadratic Bezier curve were set
as P0 = (0, c0) and P2 = (0, c2) respectively, with c0 ∼ N (0, 0.05)
and c2 ∼ N (0, 0.05). The middle point was sampled from a 2D

Gaussian with a mean of (0.5, 0.2) and covariance
[
0.07 0
0 0.05

]
.

Additionally, we created a split texture dictionary using ten ran-
domly selected real samples (refer to Fig. 8). Since our study focuses
on defect detection, in addition to rendering images, we generate
mask images for the automatic defect annotation, as shown in Fig. 9.
The resulting synthetic images were then compared with real images,
and the comparison is presented in Fig. 10.

In synthetic training images, minor systematic deviations between
automatic synthetic labels and human-annotated labels are inevitable.
For instance, the point where the defect ends is not well-defined.
In contrast, labels generated from synthetic pipeline produces tight
annotations. Our work implemented a simple label randomisation by
enlarging the labels based on sampling a fitted distribution of real
annotated labels.

C. Network Training
As mentioned earlier in the literature, few-shot object detection

models are studied extensively [2], [32]. However, Chen et al. [33]
compared methods from the literature and found that most studies
under-estimated the baseline (e.g. no data augmentation), and the gap
between existing methods is reduced when deeper networks are used.
Therefore a deeper state-of-the-art general-purpose CNN architecture
Yolov5 [34] with data augmentation, particularly mosaic, translation,
rotation, shearing, scaling and flipping, was used in the study. Since
this study uses HDR images the model implemented in [13] was
used. Furthermore, to make the comparison fair, the best-performing
parameters were saved for validation by training all the models for a
prolonged period (2000 epochs). Additionally, the study experiments
were carried out with five-fold cross-validation by keeping five-fold
test sets the same for all combinations of experiments.

VI. RESULTS

This section evaluates the proposed framework for a real defect
detection task. Initially, we present results for a fully factorial
experiment that was conducted using various sets of real and synthetic
images (see Table II). Qualitative and ablation studies follow. We
show that the models trained by adding synthetic images outperform
the state-of-the-art CNN models exclusively trained on real images.
The method was evaluated using the dataset described in Section V
with the same test set for all experiments.

A. Influence of Synthetic data on DL-based object detectors
Mean average precision (mAP), evaluated at 0.5 to 0.95 with an

interval of 0.05 intersection over union (IOU), and mAP at 0.5 IOU
(mAP50) are used as the evaluation metrics.

We evaluated our proposed method using two additional state-of-
the-art object-detection DL models from different categories: Faster
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TABLE II: Shows mAP50 (mAP) for various training sets. The underlines indicate the best performance in each row and bold indicates the
best performance among all the experiments.

Detectors Real
Synth Baseline +10 +20 +40 +80

Yolov5 (No Aug)

0.050 (0.011) 0.167 (0.048) 0.353 (0.106) 0.530 (0.192)
10 0.121 (0.033) 0.292 (0.083) 0.318 (0.090) 0.543 (0.185) 0.570 (0.229)
20 0.265 (0.092) 0.382 (0.126) 0.547 (0.202) 0.536 (0.189) 0.682 (0.284)
40 0.624 (0.253) 0.739 (0.315) 0.526 (0.200) 0.715 (0.349) 0.772 (0.366)
80 0.783 (0.363) 0.849 (0.407) 0.877 (0.439) 0.879 (0.468) 0.879 (0.471)

FRCNN

0.123 (0.034) 0.343 (0.128) 0.413 (0.151) 0.550 (0.199)
10 0.123 (0.031) 0.553 (0.165) 0.645 (0.206) 0.639 (0.208) 0.609 (0.212)
20 0.664 (0.201) 0.655 (0.191) 0.675 (0.208) 0.620 (0.186) 0.729 (0.250)
40 0.769 (0.266) 0.767 (0.269) 0.779 (0.265) 0.797 (0.291) 0.761 (0.276)
80 0.855 (0.294) 0.852 (0.314) 0.868 (0.302) 0.847 (0.288) 0.866 (0.297)

DTER

0.038 (0.012) 0.081 (0.027) 0.167 (0.049) 0.434 (0.128)
10 0.062 (0.023) 0.082 (0.03) 0.120 (0.048) 0.374 (0.153) 0.533 (0.209)
20 0.192 (0.081) 0.217 (0.097) 0.281 (0.129) 0.368 (0.163) 0.672 (0.311)
40 0.274 (0.11) 0.391 (0.184) 0.436 (0.202) 0.583 (0.287) 0.788 (0.390)
80 0.791 (0.412) 0.762 (0.384) 0.748 (0.391) 0.835 (0.446) 0.879 (0.459)

Yolov5

0.658 (0.264) 0.765 (0.339) 0.796 (0.399) 0.822 (0.456)
10 0.857 (0.452) 0.898 (0.497) 0.893 (0.500) 0.921 (0.531) 0.891 (0.548)
20 0.940 (0.555) 0.937 (0.574) 0.939 (0.584) 0.953 (0.596) 0.944 (0.599)
40 0.969 (0.631) 0.968 (0.631) 0.969 (0.632) 0.977 (0.642) 0.981 (0.645)
80 0.978 (0.665) 0.979 (0.683) 0.976 (0.676) 0.979 (0.684) 0.981 (0.688)

Fig. 10: Comparison of Real Images (Row 1) and Synthetic Images
(Row 2), highlighting minor domain variations and realistic synthetic
defects. The synthetic images, from left to right, illustrate a clear
split defect, a curved split defect, a straight brittle fracture commonly
found in circular samples, a small neck defect, and multiple defects
within a single sample.

R-CNN [35], which represents a two-stage CNN model, and DETR
[36], which represents a transformer-based model. As mentioned
in Section V-C, Yolov5 used several traditional and advanced data
augmentations. Therefore, additionally, we compared our method
using a yolov5 model without data augmentation (Yolov5 (No Aug))
as a defect detector. Table II presents the quantitative results obtained
with various deep learning-based object detectors. The table shows
the mAP50 (mAP) values for different training sets under varying
amounts of real and synthetic images. The rows represent the number
of real images used, and the columns represent the number of
synthetic images used. The underlined values in each row indicate
the best performance, while the bold value in Table II represents the
overall best performance among all the experiments. Incorporating
synthetic images into the training process resulted in significant
performance improvements for all the models, as measured by both
mAP50 and mAP. This highlights the effectiveness of using synthetic
data as a valuable resource for training object detectors, particularly
in scenarios where real training data is limited.

The study used ten real stamping components to generate the
synthetic images. Therefore, the model trained on the same ten real

images is used as the baseline. The performance for Faster-RCNN,
DTER and Yolov5 (No Aug) was poor. However, the addition of
synthetic images led to 0.645, 0.533 and 0.570 mAP50 for Faster-
RCNN, DETR and Yolov5 (No Aug), respectively, compared to their
respective baselines.

The best mAP50 of 0.857 and mAP of 0.452 were achieved using
the Yolov5 model for ten real samples. Using only synthetic images
achieved comparable results of 0.822 and 0.456 mAP50 and mAP,
thereby proving the quality of generated images. Adding synthetic
images to the ten real training images improved 6.4% in mAP50 and
9.9% in mAP compared to the baseline. This indicates that incorpo-
rating synthetic images can effectively enhance the performance of
the Yolov5 model even when limited real training data is available.

Furthermore, the results indicate that 80 real samples were suffi-
cient to achieve a satisfactory performance of a mAP50 of 0.978 with
the Yolov5 model. This indicates that the 80 real samples provided
adequate data representation for the dataset used in the study. Thus,
the performance achieved with 80 real samples using the Yolov5
model serves as a benchmark to demonstrate the superiority of our
method in achieving comparable performance while using fewer real
samples. It is important to note that creating a large enough dataset
to adequately capture the data representation for small prototypes is
feasible; however, the associated cost becomes significantly expensive
when dealing with larger and more complex real stamping parts.

Our proposed method achieves comparable performance while
utilising fewer real samples. For instance, combining 40 real images
with 40 synthetic images yielded a mAP50 of 0.977, comparable to
the mAP50 of 0.978 achieved using 80 real images. Moreover, aug-
menting the dataset with an additional 40 synthetic images (totalling
40 real and 80 synthetic images) resulted in an even higher mAP of
0.981. This finding showcases the effectiveness of our approach in
achieving comparable performance while utilising a reduced number
of real samples. The results highlight the potential of our method to
address the limitations of cost and availability associated with real
training data, particularly in scenarios where larger real stamping
parts are involved.
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B. Comparison with Few shot methods
In this section, we compare our proposed method with the two

main categories of few-shot methods, namely the pre-training-based
method and synthetic images from generative models. The Yolov5
detector was used for training for these experiments since it was the
best-performing model in the previous section.

From the data augmentation category, we compared Defect-aware
Feature Manipulation GAN (DFMGAN) [37] and a fine-tuned stable
diffusion model to generate synthetic images. DFMGAN is a state-
of-the-art few-shot model for generating defect images and consists
of two training stages: first a backbone is trained on defect-free
images, and then the model is fine-tuned on defect images with an
additional defect-aware residual block. Conversely, there is no prior
study that applies diffusion-based models for defect image generation
tasks. Therefore, we propose to fine tune an stable diffusion model
[38] as a further comparison. It should be noted that although the
stable diffusion model was initially trained on extensive datasets, it
encountered challenges in generating rare, application-specific images
which is the focus of our work. To ensure a fair comparison with the
DFMGAN model, we fine-tuned the diffusion model using 30 defect-
free images in addition to defective images.

Fig. 11 presents a visual comparison of synthetically generated
images generated by the aforementioned generative models and our
proposed framework. As observed in Fig 11 row 2, DFMGAN
exhibited difficulties in producing realistic defects, particularly within
regions of bright reflections. Conversely, the diffusion model gener-
ated images with noticeable noise artefacts for a few training images
(10 defective and 30 non-defective images). Although the quality of
the generated images is aesthetically satisfactory when training with
40 or 80 defective images, the diversity of samples produced for
training a defect detection method is insufficient leading to lower
detection accuracy.

In the context of the pre-training method, we first trained the
yolov5 model using 1470 open-source metal crack defect images
collected from literature [39]. Then the model was fine-tuned using
our dataset.

Results comparing DFMGAN [37], fine-tuned stable diffusion [38]
and the pre-trained models with our proposed method are shown in
Table III. The first row shows the number of real samples used during
the training stage. As it can be observed our proposed framework con-
sistently outperforms existing few-shot methods. This superiority over
the pre-trained model can be attributed to two primary factors: firstly,
the dataset employed for pre-training is inadequately representative
of the stamping dataset, particularly with regard to neck defects and
defects obscured in bright reflection areas. Secondly, our framework
capitalises on HDR imaging, enabling the capture of intricate details,
especially in challenging lighting conditions.

One reason our proposed framework surpasses the generative
models is due to its capacity for conditional image generation. For
example, our method provide control over defect class, location,
light and other environmental conditions. Whereas, these generative
models failed to provide additional information to the detection
models due to their inability to generate a large diversity of defects or
sample due to the limited representation in the training set. Moreover,
these generative models are incompatible with HDR imaging, further
underscoring the significant improvement offered by our framework
over existing generative methods.

It is important to note that the inference time remains same 0.006
seconds while using Yolov5 model for our framework, traditional and
other compared few shot methods. The primary distinction lies in the
use of HDR images in our method compared to LDR images in other
compared methods. This distinction does not affect computational
time since the normalisation step is common to both approaches.

TABLE III: Comparison of defect detection performance between the
few-shot models, alongside the performance of the Yolov5 model
trained on LDR and HDR images. The performance is shown in the
format mAP50 (mAP).

Methods 10 20 40 80

Pre-Trained 0.814 (0.420) 0.863 (0.498) 0.914 (0.561) 0.928 (0.613)
Stable Diffusion [38] 0.834 (0.472) 0.880 (0.511) 0.892 (0.549) 0.933 (0.605)
DFMGAN [37] 0.837 (0.455) 0.879 (0.518) 0.926 (0.588) 0.956 (0.623)
Ours 0.921 (0.548) 0.953 (0.599) 0.981 (0.645) 0.981 (0.688)

Fig. 11: Comparison of synthetic images from diffusion model (Row
1), DFMGAN (Row 2) and our method (Row 3). The left column
shows for model trained using 10 real images and the right shows
80 real images.

Overall, our results reaffirm the efficacy of our proposed method
in addressing the challenges associated with defect detection in
sheet metal stamping. Furthermore, they highlight the potential of
our approach for real-world industrial applications, showcasing its
ability to overcome the limitations of few-shot methods and generate
accurate defect detection outcomes.

C. Qualitative Results
The proposed framework generates defective stamping images

with a minimum domain gap, as shown in Fig. 10. Fig. 12 shows
qualitative results for the defect detection experiments. Fig. 12 shows
the ground truth in “green” and prediction in “orange” with an
assigned confidence score. The columns represent the number of real
images used to train the CNN model, row 1 shows the results from
exclusively using real images, and row 2 shows the improved results
after combining synthetic training images with real training images.
From Fig. 12, it can be observed that the model trained on mixed data
not only increases the number of correct predictions but also reduces
the false predictions. Additionally, using synthetic images improves
the confidence score of correct predictions.

D. Ablation Studies
This section presents an ablation study that evaluates the influence

of various stages of synthetic dataset generation, such as label
randomisation and impurities. To study three datasets were prepared.
First, dataset “C1: Basic” includes synthetic images without impu-
rities and with tight annotations created directly from the synthetic
pipeline. Second, dataset “C2: Basic + LR” includes C1 datasets with
label randomisation (LR). The third dataset, “C3: Basic + LR + IM”,
includes C2 added with procedurally generated surface impurities
(IM) such as scratches and fingerprints. The Yolov5 model was
trained with the three above mentioned datasets and a mixture of
C2 and C1 datasets with equal proportions.
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Fig. 12: Compare qualitative results for models trained with only real data (row 1) and combined real and synthetic data (row 2). The ground
truth is shown in green and the prediction with confidence score is shown in orange.

TABLE IV: Presents mAP50 (mAP) for synthetic training datasets.

Datasets Synthetic Real
C1: Basic 0.886 (0.120) 0.574 (0.195)
C2: Basic + LR 0.951 (0.603) 0.688 (0.347)
C3: Basic + LR + IM 0.987 (0.616) 0.796 (0.422)
C2 + C3 0.990 (0.756) 0.822 (0.456)

Fig. 13: Shows ground truth in green and prediction in orange for
datasets C1, C2, and C3 in columns 1, 2, and 3 respectively.

The quantitative results evaluated on synthetic and real datasets,
including mAP50 and mAP, are presented in Table. IV. The eighty
synthetic test examples are taken from dataset C3. We can observe
higher performance for the synthetic test set as the dataset comes from
the same domain. However, the differences are substantial when the
datasets are tested on real examples. For example, label randomisation
improves mAP50 by 10.8% and mAP by 12.5%, and the inclusion
of impurities as discussed in Section IV improves the mAP50 and
mAP by 10% and 7%, respectively. Finally, combining data from C2
and C3 gave a further 3% improvement in both mAP50 and mAP.

Qualitative results for the experiments are shown in Fig. 13. The
first, second, and third columns of Fig. 13 show the results for datasets
C1, C2, and C3, respectively. Although the same number of defects
are predicted correctly for datasets C1 and C2, the confidence and
IOU of prediction are lower in the case of dataset C1 (see Fig. 13
columns 1 and 2). Furthermore, since the synthetic datasets (C1 and

C2) have ideal surfaces without impurities, the models trained using
these datasets are not only missing defects but also showing false
predictions for edges and impurities (see columns 1 and 2 in Fig.
13). Finally, adding impurities to the synthetic images reduce false
predictions (see Fig. 13 column 3). Additionally, label randomisation
and impurities show a prediction comparable to the ground truth with
high confidence.

VII. DISCUSSION AND CONCLUSION

This study proposed a framework that generates photorealistic
imagery for training machine learning split defect detection classifiers
for stamped metal parts. This work proposes a new, principled
approach, which overcomes the low resolution and computational cost
limitations of physical simulation-based methods, and the unrealistic
defect placement from synthesis-based approaches. The proposed
framework leverages both approaches to generate physically accurate
and visually diverse photorealistic defects. The framework uses a
novel application of FEM and FLC to find plausible defect locations
and dimensionality reduction and Bezier curve-based texture mapping
to make a wide range of split defects from a limited dictionary of
captured crack displacements. The results show that the framework
outperforms the model trained exclusively on real images, even when
only half of the real examples are used. This indicates its potential for
automating split defect inspection, particularly in the common case
where capturing a real training dataset is challenging to achieve.

The framework can also be extended to other stamping components
by tuning the hyperparameters. This allows split inspection on a
wide range of stamping components. This study approximates the
parameters p, sl, , and sr from an experimental FLC, which most
stamping manufacturers generate for component design. However,
these parameters can also be achieved easily from pilot runs. The
core concept of the study, which uses both physics-based simulation
and computer graphics to generate defect datasets for DL model
training, opens up the potential for further research to develop similar
frameworks for other types of defects and manufacturing processes,
leading to a fully automated stamping defect inspection process. This
framework has the potential for future improvements in other areas of
manufacturing, where gathering datasets are expensive and automatic
defect detection is essential.

Although the results indicate the feasibility of training a DL
model using synthetic images generated with our framework, we
acknowledge certain limitations in our study. Currently, our focus is
primarily on split defects and representative parts. As future work, we
intend to expand the number of parts in our dataset. This will need to
involve collaborating with a stamping manufacturer to obtain a wide
range of complex components with the necessary part design and
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material properties. This collaboration would allow us to validate the
effectiveness of our approach on a broader range of stamping parts.

Moreover, for the successful deployment of a DL-based model
for defect detection in stamping components, it is crucial to detect
all types of defects encountered in practice. Therefore, an important
future direction is to extend our framework to encompass other types
of defects. One such defect commonly found in stamping components
is wrinkles. To incorporate physical accuracy into the synthetic
generation of wrinkle defects, we propose leveraging multiple FEM
simulations with modified material and process parameters. This
approach will allow us to explore the extreme range of wrinkle
locations and capture the realistic variations in their occurrence. Then,
following the framework proposed in this paper, we can use real
wrinkle textures to generate realistic synthetic images of wrinkle
defects.

In conclusion, this study presents a novel framework that combines
physics-based simulation and computer graphics methods to generate
photorealistic images of split defects in sheet metal stamping for
training split defect detection classifiers. The proposed method gen-
erates both accurate locations and visual diversity of defects, making
it an important step towards fully automated defect inspection in the
manufacturing industry.
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