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In this document, we provide further details on:
• the selection of 𝛼 and the ensemble size
• the data structure used to store the complementary ensemble
to allow fast queries

• how EMLT scales with the number of threads
• a visualization of the perturbations on the image plane for all
other scenes in the main paper

• why normals are not included in the similarity measure via
an example

• using EMLT for rendering caustics

1 IMPACT OF 𝛼
To assess the impact of the 𝛼 parameter for selecting perturbation
sizes when using the Guided Lens perturbation we investigated
using a static lower and upper bound for a region of the DOORAJAR
where the impact of this is especially apparent. This shows that using
a constant small value for 𝛼 leads to low-frequency noise, a too high
value results in jumps on the image plane which are too large and
and leads to perturbations being rejected. The sigmoid weighting
between the two extremes leads to fewer rejected perturbations
while exhibiting lower frequency noise.

2 ENSEMBLE SIZE
To determine the size of the ensemble of paths used, we performed
an experiment to assess how MSE varies with ensemble size. We
computed an image at 64 SPP for each scene used in this paper, and
varied the ensemble size from 1204 paths to 131072 paths. As the
MSE varies for each scene, we normalized each MSE by average
scene luminance to be able to compare values across scenes. Figure 2
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Fig. 1. Different values for the 𝛼 parameter shown for an inset of the glass
teapot in the DOOR AJAR scene. The left image shows a small constant
𝛼 = 0.05 leading to clumping of paths, the middle shows the adaptive value
for 𝛼 used in this paper which balances between extremes, and the right
image shows 𝛼 = 0.5 where the size is too large leading to a higher chance
of sampling invalid paths especially when lighting varies in a small region
such as the reflection in the glass.
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Fig. 2. MSE of different ensemble sizes across all scenes used in this paper.
The black line shows an average, with a minimum at 16384 paths.

shows the results of this analysis, where the black line is an average
across scenes. The minimal MSE occurs at 16384 paths. We found
that fewer paths provide insufficient information to guide sampling
in some scenes, whereas using more paths leads to inefficient ex-
ploration of the space in a finite rendering time. The reason for
this latter point is that if there are 𝑁 paths being computed over
𝑇 = width × height × SPP, each path can perform 𝑇

𝑁
mutations and

perturbations. As 𝑁 increases, each path has fewer steps to explore
the space, leading to a decrease in convergence.
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Fig. 3. Overview of the pool structure used to accelerate lookups of paths from the complementary ensemble. This diagram shows the three level structure we
use: the root contains all paths in the ensemble, each node on the first level contains paths of the same number of path vertices, then the final level clusters
paths with the same interaction types. Perturbation strategies which rely on sampling paths of the same length and interaction type can be quickly found by
traversing the tree.

3 POOL ACCELERATION STRUCTURE
The data structure used to efficiently query paths with similar prop-
erties from Y (the complementary ensemble) is implemented as a
three level tree of pointers to light paths. The root contains a list of
all light paths in the complementary ensemble Y. The second level
of the tree contains nodes storing a list of paths of equal length,
and the third level contains all paths with the same interaction type
for all vertices in the path. Figure 3 illustrates the structure of the
tree. This tree is fast to construct with 𝑂 ( |Y|) complexity, and uses
minimal memory due to storing lists of pointers.

Lookups can be performed efficiently based on the criteria speci-
fied by the transition kernel by traversing the branches of the tree
which match the criteria. The proposed transition kernels require
either one random path from the ensemble, or a set of𝑀 determinis-
tically chosen paths. In either case, the tree is first traversed through
nodes which match the criteria from the kernel until all criteria are
matched, or no matching criteria are found and the traversal returns
no paths. If the criteria are matched, and one random path is re-
quired, then a path from the list of paths in the node is returned at
random. If a set of deterministically chosen paths is required, then
we propose a deterministic selection procedure. Similar to many
hashing schemes, this takes in an integer value 𝐼𝐷 and returns a
set of 𝑀 integer values, corresponding to indices of paths within
the list of paths in the node. This mapping 𝐻 : Z ↦→ Z𝑀 can be
implemented through any deterministic mapping. We implement
𝐻 as a function which returns (𝐼𝐷 + 𝑜) mod |𝑁𝑜𝑑𝑒 |, 𝑜 ∈ [1..𝑀],
where |𝑁𝑜𝑑𝑒 | is the number of paths in the node. If this is less than
𝑀 then we return all paths in the node. Traversal therefore has𝑂 (1)
complexity. These paths are stored in the set Υ = {𝜐1 ..𝜐𝑀 } which
contains the𝑀 paths resulting from the tree lookup. 𝐼𝐷 is set to a
random integer for each path in X and Y, and is incremented every
lookup.

For example, if a transition kernel requires a set of paths of length
4, with interaction types 𝐿𝐷𝑆𝐸, then the root node does not satisfy
the criteria, so the tree is followed to the set paths of length 4, then
the node containing the set of paths with interaction types 𝐿𝐷𝑆𝐸 is

located, and finally 𝐻 is applied to the node returning a set of paths.
If no paths of the required type are found, this then backtracks in
the tree and returns a set of paths of the matching length, again
through the application of 𝐻 .

4 MULTITHREADING SCALABILITY
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Fig. 4. Graph showing how the performance of EMLT scales with the num-
ber of threads. We have also included the scalability graph for Path Tracing
(PT) for reference.

Figure 4 shows how the performance of EMLT scales with the
number of threads.We implemented all methods in the paper using a
job queue where each job consists of updating each path. This leads
to fine grained load balancing and efficient utilization of available
threads. The only synchronization point is updating data structures
swapping between ensembles, but this involves creating a tree of
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Fig. 5. Visualization of perturbations on the image plane for the remainder
of the scenes used in this paper (the KITCHEN scene is shown in Figure 12
in the main paper). Green colors mean perturbations were predominately
vertical, red mean predominately horizontal, and yellow means perturba-
tions were predominately isotropic. The left column shows perturbations
from MLT and the right shows our method.

paths in 𝑂 ( |Y|) time, which is small as |Y| is small, see Section 2
of this document. Therefore, Figure 4 illustrates a linear scaling in
performance with the number of threads as expected. We also show
the scaling for path tracing implemented in the same system for
comparison, also exhibiting the linear scaling as expected.

5 MUTATION MAPS
Figure 5 visualizes the anisotropic perturbations for the remainder
of the scenes in the main paper. Similar to Figure 12 in the main
paper, green represents perturbations which lead to vertical shifts
of path position on the image plane, red shows horizontal, while
yellow are isotropic. Results for MLT are in the left column and our
method in the right. This shows that the perturbations proposed by
our approach adapt to both geometry and lighting information.

6 IMPACT OF NORMALS ON THE SIMILARITY
MEASURE

The similarity measure as described in the paper does not include
normals. If normals are included, then this measure leads to lower
similarity scores for paths which may be spatially local and useful
for guiding perturbations. Figure 6 shows results using a similarity
measure with andwithout normals for the DISPLACEDWALL scene,
a wall with high frequency displacements lit by an environment
map. The image without normals, right, shows a reduction in MSE
of around 5% compared to including normals.

7 CAUSTICS RESULTS
The scenes in the main paper have shown lighting consisting of
all types of surface interaction. However, to investigate the perfor-
mance of EMLT for caustics in particular, we examine an example
scene containing glass shards lit from above, resulting in caustics on
the ground, and multiple specular interactions between the shards.
In Figure 7 we show results for this scene rendered at 8 mutations
per pixel to illustrate the differences between the methods. EMLT is
able to capture thin features of the caustics compared to MLT, as
shown in the insets, and is able to better explore the lighting on the
glass fragments.
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Fig. 6. The DISPLACED WALL scene showing the impact of using normals when computing the similarity measure for indirect lighting. The top left image
includes normals, the top right excludes normals, the bottom left is a reference, and the bottom right shows the lighting environment for reference.
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Fig. 7. Results for the shards scene showing a reference rendering on the left, MLT in the center, and EMLT on thr right.
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