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ABSTRACT
Mobile devices, also known as small-form-factor (SFF) de-
vices such as mobile phones, PDAs and ultra mobile PCs
have continued to grow in popularity. Improvements in SFF
hardware has enabled a range of suitable applications such
as gaming, interactive visualisation and mobile mapping.
Although high-fidelity graphic systems typically have sig-
nificant computational requirements, the time taken may be
largely resolution dependent. The limited resolution of SFFs
indicates such platforms are prime candidates for running
high-fidelity graphics.

Due to the limited hardware available on mobile devices, it
is not currently possible to produce high-fidelity graphics in
reasonable time. However, most SFFs have some degree of
network capability. Using a remote server in conjunction
with a mobile device to render high-fidelity graphics on de-
mand allows us to substantially reduce the total rendering
time. This paper introduces a client-server framework for
minimising rendering times using a cost function to predict
optimal distribution of rendering.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems—Client/Server ; D.2.8 [Software Engineering]:
Metrics—Performance Measures
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1. INTRODUCTION
Over the past few years significant growth in the popularity
of small-form-factor (SFF) devices such as PDAs and mobile
phones has taken place. The portability of these devices,
enables delivery of key visual information to users “in the
field”. High-end applications including interactive exhibit
exploration, navigational tools and multi-user mobile games
are highly suited to exploiting mobile technology. Such ap-
plications are however significantly constrained due to the
physical and technical properties of these devices. It is not
currently possible to produce physically based high-fidelity
3D graphics at interactive frame rates on such platforms.

High-fidelity graphics are a set of rendering algorithms de-
rived from the physical interaction of light within an en-
vironment. As a result of their physically realistic basis,
such methods are capable of accurately calculating physical
measures and hence produce highly realistic imaging. The
drawback of these techniques is the inherent cost of perform-
ing such complex calculations. Recent advances in this field
have however made it possible to render non-complex scenes
at interactive rates on a single high performance desktop
PC [29].

The ultimate goal of our work is to achieve interactive frame
rates for high-fidelity rendering techniques on SFF devices.
Although, it may not be possible to achieve these rates on
current mobile platforms, we demonstrate techniques that
minimise the amount of computation required as well as in-
troduce novel methods of optimising the necessary rendering
times. It is also worthwhile taking into account that the next
generation of SFF devices are likely to resolve some of the
resource limitations such as bandwidth, memory and pro-
cessing power. From the combination of improvements in
hardware as well as our specialised rendering techniques, we
intend to demonstrate that physically-based techniques will
shortly provide a realistic alternative over existing rendering
strategies, delivering high quality synthesis at a reasonable
cost.
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Although the hardware of SFFs is limited, we believe that
some of their characteristics work to the advantage of
physically-based rendering techniques. Ray tracing based
solutions scale linearly with resolution with little impact
from scene complexity. In addition, due to their relatively
limited screen size, using ray tracing would require less pix-
els to be rendered than a standard desktop machine.

Another important method to improve rendering output is
to make best use of available resources. The majority of
mobile devices are equipped with some degree of network-
ing capabilities and it is increasingly common to make use of
networks to stream content on demand to such devices. It is
clear that by exploiting this access to additional processing
capability, a huge step towards reducing rendering times can
be taken. An obvious question arises from proposing such
a solution: why should we bother to render it at all? Why
would we not pre-render and stream the entire content? In
certain cases such a solution would be the ideal. In the
majority of scenarios however, a highly customised render,
tailored to the user’s perspective would be more suitable.
To pre-compute all possible combinations would be unrea-
sonable.

Within high-fidelity graphics systems, it is common to pro-
duce greater detail than it is physically possible to perceive.
This can be a result of several factors including scene com-
plexity, visual acuity and attention. The cost of producing
this additional detail is not always insignificant, so by min-
imising the required computation it is possible to maintain
image fidelity at a reduced cost.

This paper is divided as follows. Section 2 presents related
work in the fields of high-fidelity rendering and SFF devices.
Section 3 provides details of our implementation, with the
results and conclusions in Section 4 and 5 respectively.

2. BACKGROUND
In this section we discuss related work on mobile devices as
well as high-fidelity rendering techniques and related opti-
misations.

Figure 1. The GP2X Linux-based handheld game
console with ray traced scene

2.1 Mobile Devices
The increase in popularity of SFF devices as well as recent
advances in computer graphics has produced a significant

market for high-end graphics performance on mobile devices.
The ability to generate such imagery on these devices is
however severely limited by the available processing power,
battery power and bandwidth. In order to overcome these
constraints novel algorithms to optimise usage have been de-
veloped [18, 17, 13]. Computationally intensive applications,
especially high-fidelity graphics are suitable candidates for
optimisation.

Current top end graphics make use of rasterising methods on
dedicated graphics cards [19]. Despite recent hardware ad-
vances, top end mobile graphics are still relatively lightweight
compared to desktop PCs. As well as the limited processing
power, a typical high end SFF device has a display size of
3.5” and 320 × 240 resolution.

Another key capability of mobile devices is their network-
ing functionality. As detailed in the specifications for the
future 802.11n and HSPA+ wireless networking standards,
it is expected that within the next few years transfer rates
will reach up-to 74Mbps [2] [8].

Previous rendering implementations for mobile devices in-
clude Duguet et al. [6] who presented a system using hi-
erarchical packed point representations based on recursive
grid data structures, demonstrating how such point-based
approaches are well adapted to mobile devices with limited
memory and screen resolution. In order to communicate vi-
sual conceptual information, techniques such as Illustrative
rendering are used to efficently present such data. Work by
Huang et al. investigates how such rendering techniques can
be adapted to mobile platforms [12].

To our knowledge, any previous attempts at physically-based
rendering systems for mobile platforms have focussed on
purely GPU approaches. A thorough overview of GPU-
based ray-tracing implementation strategies on mobile de-
vices, taking into account their limited power constraints is
described by Lohrmann [15]. We believe by making optimal
use of the processing power and network capabilities as well
as using the display size to our advantage, it is possible to
produce high-fidelity graphics in reasonable time.

2.2 High-Fidelity Rendering
High-fidelity rendering methods compute accurate physic-
ally-based simulations of the lighting distribution in a virtual
environment. These methods use physically-based materials
and lighting and simulate the transport of light using algo-
rithms termed global illumination algorithms. There are two
major approaches to high-fidelity rendering: radiosity [10]
and ray tracing [32]. Of these ray tracing and similar algo-
rithms have become more popular recently.

Ray tracing algorithms simulate the transport of light as
groups of particles travelling in straight lines and interacting
with the environment. Rather than shooting photons from
the lights and allowing them to eventually be absorbed by
the camera, it is more efficient to trace these paths in reverse,
from the camera into the virtual environment, typically one
ray or more per pixel. When rays interact with surfaces
and media in the environment, further rays are spawned
which simulate certain lighting properties such as reflection,
refraction, colour bleeding, shadow generation, participating
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media etc.

Ray tracing methods use acceleration data structures, bas-
ed on spatial subdivision methods such as kd-trees, grids
and octrees (see Havran [11] for an overview), to identify
which objects a ray hits. These algorithms make ray tracing
scale logarithmically with the number of objects in a scene
as opposed to the linear scaling of rasterisation algorithms.
The computational complexity of ray tracing is linear to the
number of rays shot from the virtual camera. This makes
it an ideal candidate for rendering complex scenes on SFF
devices with low resolutions.

Unfortunately, ray tracing computation can be computa-
tionally expensive and only recently has interactive ray trac-
ing become viable on modern desktop PCs [26]. Interactive
ray tracing algorithms make use of multi-core and instruc-
tion level parallelism found in modern CPUs [30], careful
memory management, fast acceleration structures [23] and
spatial coherence [21] to maintain interactive rates.

2.3 Client-Server Rendering
The first client-server rendering solution was introduced by
Funkhouser [9]. This system demonstrated that by com-
puting participants’ visibility on the server, a reduction in
transmitted data is possible. The concept of on-demand
transmission of data according to regions of interest was
employed by Schneider [22] and Teler [25] who used the
idea of ’Level of Detail’ to adaptively transmit data based
on criteria such as available bandwidth and computational
power. Engel et al. developed a remote visualisation system
for OpenInventor and Cosmos3D applications using a Java
client to receive compressed images and return interaction
events via CORBA requests [7].

Recently, Quillet et al. [20] presented a system to transmit
conceptual information using a client-server system for re-
mote rendering on mobile devices. A system utilising the
computational power on both the client and server to ren-
der line graphics was presented by Diepstraten et al. [5]. In
order to reduce transmission of complete images, taking ad-
vantage of the primitives of such lines enables a significant
reduction in the data to transmit.

3. FRAMEWORK FOR HIGH FIDELITY REN-
DERING ON MOBILE DEVICES

The computational requirements for high-fidelity graphics
are far beyond the current capabilities of current mobile de-
vices. In order to achieve reasonable rendering rates on such
platforms a great deal of optimisation is required. We will
give an overview of a possible framework for delivering high
fidelity content.

Although it is possible to render complete images on a server
and stream these to our mobile system this solution does
not make use of the processing power on the mobile client
and has the overhead of transferring all this data. If we
adopted a mobile-only render, even with the next generation
of hardware it is unlikely that reasonable frame rates will be
achievable.

Both these systems have advantages and disadvantages. Our

proposed solution is to make optimal use of both the client
and server and the associated interconnect to reduce over-
all rendering time. It is important to take into account the
“cost” of the transmission of the data. Not only is the band-
width of mobile connections highly variable, but so too are
the associated financial costs. We suggest that the output
of such a system balances rendering on the client and server
whilst minimising the overall costs of rendering and trans-
mitting.

Although it still may not be possible using this framework
to render at a reasonable rate, we can make additional use
of the techniques demonstrated by Debattista [4]. By taking
into account that the results would be viewed by a human,
we can select which regions require greater rendering effort
and intelligently distribute our rendering budget. In addi-
tion to these techniques, through analysis of the perceptual
characteristics of SFFs it is possible to calculate the thresh-
olds beyond which any further rendering effort will cease to
produce greater perceptual gains [1].

In the following sub-sections we will detail our initial steps
towards realising such a framework.

Figure 2. Global Illumination of Cornell Box with
Venus de Milo models.

3.1 High-Fidelity Renderer
In order to demonstrate the potential of our framework we
have developed a portable high-fidelity renderer based on
methods developed for fast ray tracing [30].

Portability has been one of the major design goals of our
renderer and our ray tracing kernel although tight, is adapt-
able. It takes advantage of current graphics hardware and
can exploit multiple cores. Most current interactive ray
tracers use SIMD operations to speedup performance and
organise their data structures into “structures of arrays” as
opposed to “arrays of structures”. Since our design is tar-
geted to different hardware, and modular code which can be
easily interchanged and/or updated when newer algorithms
are developed, we have opted for the more standard “ar-
rays of structures” approach. However, we ensure that our
data structures are memory coherent by keeping frequently
accessed data closer in physical memory to maintain coher-
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ence across all platforms.

The current implementation uses ray tracing for the compu-
tation. The first intersection is accelerated via shaders on
systems that support fast graphics hardware. These shaders
return depth and object properties at the intersection point.
Successive intersections for whitted-style ray tracing, for de-
termining specular and transparent components of materials
are computed using recursive ray tracing. When there is no
hardware acceleration, recursive ray tracing is used for the
entire computation. Direct lighting is computed at the mo-
ment using Phong shading, but support for other shaders
such as Ward [31] could easily be added. Only hard shad-
ows are computed and area light sources are simplified as a
number of point light sources. The indirect diffuse computa-
tion is computed using our implementation of an accelerated
version of indirect radiosity [14] which had been presented
in [28]. Currently, the acceleration structure uses a dynamic
BVH based on [27].

Our implementation has worked successfully on IBM PCs
and compatibles running Linux, various versions of Windows
and MacOS X, as well as the GP2X, see Figure 1. A screen-
shot of the renderer performing global illumination can be
seen in Figure 2.

3.2 Client-Server application
Communication occurs between the server and client using
a TCP/IP connection which is established via a socket con-
nection. In order to reduce the amount of transmitted data,
data is compressed before being sent to the client where it
is decompressed and combined with a portion of the image
data that has already been rendered by the client. The final
image is then sent to the frame buffer to be displayed.

3.3 Cost Function
The processing power of devices varies significantly, so too
does the bandwidth of mobile networks. As discussed in
Section 3, we have proposed a system to minimise overall
rendering time by using a client-server architecture. In this
section we introduce our metric for optimising the distribu-
tion of rendering.

In our system, the total rendering time of the system can be
written as:

Tmobile = mTm

where Tmobile is the total cost of running on the mobile, Tm

is the average cost of rendering a pixel on the mobile and m
is the fraction of pixels to be rendered on the SFF device.
Similarly:

Tserver = s(Ts + Tt)

where Tserver is the total cost of running on the server, Ts

is the average cost of rendering a pixel on the server, Tt is
the cost to transfer one pixel to the mobile device and s is
the fraction of the number of pixels to be rendered on the
server. Note that Tt could be a function in itself that takes
into account latency and maximum bandwidth.

If we were using one mobile device and one server, ideally
we would spend the same amount of time rendering on each
to maximise computation, such that Tmobile = Tserver =
Ttotal. The solution is made simpler when one considers
that m + s = 1, and all that remains is to solve for m for
the minimum Ttotal.

The client-server architecture computes as a quick overture,
once per connection, the ideal value of m for computation
on the mobile device and transmits this value to the mobile
device. The mobile device computes m amount of the pixels
in terms of scanlines. The server computes the rest and
transmits them upon completion. The computation can be
extended to take into account the general case of multiple
servers or clients.

4. RESULTS
In order to analyse the rendering speed of our client-server
system, we ported our renderer (described in Section 3.1)
onto a Tablet PC. The client was powered by a 1Ghz Intel
Pentium M with 502MB RAM running Windows XP Tablet
Edition. This specification is comparable to current UMPCs
(Ultra Mobile PCs), and we believe is a decent representa-
tion of other next generation mobile devices. As our target
resolution, we chose 320 × 240 which is average for current
high end SFFs.

For our server we used a MacPro with two 3 GHz quad core
Intel Xeons with 4GB DDR2 memory. Data from the server
was transmitted using wireless standard 802.11g which pro-
vided an average throughput of 19Mbit/s.

We tested our system using two different scenes, the Buddha
(67,244 polygons) in Figure 4 and a Cornell Box with Venus
de Milo and a reflective sphere (45,109 polygons) in Fig-
ure 3. In the calculation to optimally balance rendering it
was assumed that the cost of receiving network data on the
mobile and the cost of compression/decompression was con-
stant per pixel, this can be integrated into the cost function.
We assume a compression ratio of 4:1, based on compression
rates observed using ZLIB. The average cost of transmission
for the Tablet per ray using a wireless connection came out
at 400ns. We compared how our system dealt with varying
setups, the results of which can be seen in Table 1. Based on
the costs of rendering on client and the server, our cost func-
tion was used to calculate the optimal balance of rendering
effort between the client and server, providing the minimum
possible rendering cost and the associated distribution.

Using the system as described above, we found that to min-
imise the rendering time for the Tablet, about 10% of the
scene is required to be rendered on the mobile. By applying
our cost function, we were able to demonstrate a decrease
in rendering time per pixel of magnitude 8-13, delivering an
approximate frame of between 10-23 FPS, providing near
interactive rates. From the rates in Table 1, it may seem
a reasonable question to ask why one would not render the
entire content on the server and make use of the significant
resources. It is however, important to note that these results
are somewhat idealised; although the servers’ frame rates are
impressive, it is an unreasonable assumption to believe that
clients will have the luxury of a dedicated server. If these
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Table 1. Rendering time per pixel in nanoseconds on server, client and speed-up achieved using our cost
function optimisation.

Scene No. server Server Client Cost function optimisations
processors Time per pixel (ns) Time per pixel (ns) Client share Time per pixel (ns)

Cornell Box 2 989 8841 13.58% 1200
4 585 8841 10.02% 886
8 325 8841 7.58% 669

Buddha 2 520 6688 12.09% 809
4 390 6688 10.56% 706
8 208 6688 8.33% 557

resources were to be distributed among more clients, the
balance of rendering would be altered significantly.

Figure 3. Ray traced Cornell Box with Venus de
Milo model and reflective sphere.

Figure 4. Ray traced Buddha model.

5. CONCLUSIONS AND FUTURE WORK
The results from our client-server rendering system have
demonstrated a method of delivering high-fidelity content
at near interactive rates. Although our results were pro-
duced on a Tablet PC, it is important to take into account
the trends of improvements to mobile hardware and network
speeds which would significantly reduce the load placed on
the server. From our results we can conclude that due to
the low resolution of SFF devices, ray tracing based render-
ing may be possible at a reasonable rate within the next

few years, opening up the use of such mobile devices for
many applications which require high-fidelity physics-based
imagery. Our initial implementation of a client-server solu-
tion to minimise rendering time demonstrates how adaptive
balancing of rendering load can be used to reduce this fur-
ther.

Although it is a matter of significant debate whether pure
ray tracing based rendering delivers any further quality over
rasterisation, it is trivial to extend ray tracing using methods
such as path tracing or distributed ray tracing to deliver
a full global illumination solution capable of producing a
complete physically-based solution including indirect diffuse
illumination and caustics.

As part of the overall view of the framework discussed in
Section 3, in the future we intend to investigate how our
cost function can be extended to multiple servers/clients. It
is also possible to improve our cost function to take into ac-
count additional variables such as the financial cost of trans-
mitting the data such that the minimal rendering time can
be produced whilst meeting financial constraints.

A further step to reducing rendering costs is to take into ac-
count the effect of human visual perception, allowing us to
reduce rendering in regions of a scene without introducing
perceptible errors [33, 3, 24]. By selectively targeting our
rendering effort using perceptual models [33, 3, 24, 16] we
can minimise any potentially redundant computation with-
out reducing perceptual quality.

In addition to employing selective rendering techniques, we
will take into account analysis of the unique perceptual thresh-
olds on SFF devices which have be proven to differ from
other display devices [1].
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